

ENOVIA Synchronicity
DesignSync Data Manager

V6R2013

DFII SKILL Programming Interface
Guide

Copyrights and Trademarks
© Dassault Systèmes, 1994 - 2012.

All rights reserved.

PROPRIETARY RIGHTS NOTICE: This documentation is proprietary property of Dassault Systèmes. This documentation shall be
treated as confidential information and may only be used by employees or contractors with the Customer in accordance with the
applicable Software License Agreement.

Adaplet, Compliance Connect, DesignSync, ENOVIA, ProjectSync, Synchronicity, Team Central, ENOVIA Collaboration Platform,
ENOVIA Business Process Services, ENOVIA Platform Server, ENOVIA Modeling Studio, ENOVIA 3D Live, FCS, AEF, Applica-
tion Exchange Framework, Application Development Kit, ENOVIA V6X-BOM Engineering, ENOVIA Library Central, ENOVIA Mate-
rials Compliance Central, ENOVIA Variant Configuration, ENOVIA Program Central, ENOVIA Sourcing Central, ENOVIA
Specification Central, ENOVIA Supplier Central, ENOVIA Collaborative Interference Management, ENOVIA Semiconductor
Accelerator for Team Compliance, ENOVIA Aerospace and Defense Accelerator for Program Management, ENOVIA Apparel
Accelerator for Design and Development, ENOVIA Automotive Accelerator for Program Management, ENOVIA Medical Device
Accelerator for Regulatory Compliance, ENOVIA X-BOM Cost Analytics, ENOVIA X-BOM Manufacturing, ENOVIA Synchronicity
DesignSync DFII, ENOVIA Synchronicity DesignSync MW, ENOVIA Synchronicity DesignSync CTS, ENOVIA IP Gear, IconMail,
ImageIcon and Star Browser are either trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/
or other countries.

Oracle® is a registered trademark of Oracle Corporation, Redwood City, California. DB2, AIX, and WebSphere are registered trade-
marks of IBM Corporation. WebLogic is a registered trademark of BEA Systems, Inc. Solaris, UltraSPARC, Java, JavaServer Pages,
JDBC, and J2EE are registered trademarks of Sun Microsystems, Inc. Windows XP and Internet Explorer are registered trademarks
of Microsoft Corp. HP and HP-UX are registered trademarks of HP. All other product names and services identified throughout this
book are recognized as trademarks, registered trademarks, or service marks of their respective companies.

The documentation that accompanies ENOVIA Synchronicity DesignSync products describes the applications as delivered by Das-
sault Systèmes. This documentation includes readme files, online help, user guides, and administrator guides. If changes are made
to an application or to the underlying framework, Dassault Systèmes cannot ensure the accuracy of this documentation.

NOTE: This manual was generated directly from the online help with minimal reformatting. The PDF version is optimized for printing
and does not contain active cross-reference links or animated use cases. Because the intent of the help is to be an online guide,
there may be shortcomings in its organization and general usability as a printed document. The PDF version was created before lim-
ited changes were made to WebHelp. For the most current information, see the product’s online help.

Dassault Systèmes ENOVIA

175 Wyman Street,

Waltham, MA 02451

Telephone 781.810.3500

Email: enovia.info@3ds.com

http://www.3ds.com

iii

Table Of Contents

Release Information .. 1

Documentation .. 1

Selecting the appropriate release .. 1

Available Release-Specific Documentation ... 1

Locating the Release Specific Documentation .. 1

Product Enhancement Overview .. 2

General and Open Issues .. 2

Closed Issues... 2

Installation .. 2

Introduction ... 3

Syntax Conventions ... 3

Error Handling and Diagnostics ... 5

Error Handling in Function Invocations .. 5

Setting a Trace .. 5

Return Values .. 5

Return Values and Background Commands .. 5

Revision Control Functions ... 7

dssAddFileP .. 7

dssBranchCellP ... 7

dssBranchCellViewP ... 8

dssBranchLibraryP .. 9

dssCancelCellViewP .. 9

DesignSync Data Manager DFII SKILL Programming Interface Guide

iv

dssCancelFileP .. 11

dssCheckinCategoryP ... 12

dssCheckinCellP.. 14

dssCheckinCellViewP .. 16

dssCheckinFileP .. 18

dssCheckinHierarchyP .. 21

dssCheckinLibraryP ... 25

dssCheckoutCategoryP ... 27

dssCheckoutCellP ... 29

dssCheckoutCellViewP .. 31

dssCheckoutFileP .. 33

dssCheckoutHierarchyP .. 36

dssCheckoutLibraryP ... 40

dssCompareViewsP .. 42

dssCompareViewsHandlerP .. 45

dssCompareViewsListHandlersP... 48

dssCompareViewsRemoveHandlerP ... 49

dssConfigureLibraryP .. 49

dssCreateCellViewP .. 50

dssDeleteCategoryP .. 51

dssDeleteCellP .. 53

dssDeleteCellViewP .. 55

dssDeleteFileP .. 57

Table Of Contents

v

dssDeleteLibraryP ... 59

dssDeleteTemporaryViewsP ... 61

dssDeleteVersionP .. 62

dssFetchCellViewVersionP .. 62

dssFetchLockedP .. 63

dssGetFileTagsP ... 66

dssGetFileVersionP ... 67

dssGetFileVersionsP ... 69

dssGetTagListP ... 70

dssGetViewPathP .. 72

dssGetViewTagsP ... 72

dssGetViewVersionP ... 73

dssGetViewVersionsP ... 75

dssIsFileLockedP... 76

dssIsViewLockedP ... 77

dssJoinLibraryP ... 78

dssLibraryStatusP.. 80

dssListHierarchyP .. 82

dssTagCategoryP .. 85

dssTagCellP .. 86

dssTagCellViewP... 87

dssTagFileP ... 89

dssTagHierarchyP ... 91

DesignSync Data Manager DFII SKILL Programming Interface Guide

vi

dssTagLibraryP.. 94

dssUnlockCellViewP .. 95

dssUnlockFileP .. 96

dssViewDataSheetP .. 98

dssViewVersionHistoryP .. 99

Menu Customization Functions ... 103

Customizing the Synchronicity Menu ... 103

dssMenuAddItemP .. 103

dssMenuAddValidItemP .. 104

dssMenuListItemsP ... 106

dssMenuListMenuP ... 106

dssMenuLoadConfigP ... 107

dssMenuRefreshP ... 107

dssMenuRemoveItemAllP ... 108

dssMenuRemoveItemP ... 108

dssMenuRemoveValidItemP ... 109

dssMenuSaveConfigP ... 110

dssRefreshWindowBannerP .. 110

Miscellaneous Functions ... 113

dssChangeDefaultsContextP ... 113

dssChangeUserLevelP .. 114

dssEnableDebugP ... 114

dssExecuteTclP ... 115

Table Of Contents

vii

dssHelpP ... 116

dssSetWorkspaceRootPathP .. 116

dssGetWorkspaceRootPathP .. 117

Getting Assistance .. 119

Using Help ... 119

Getting a Printable Version of Help.. 120

Accessing Product Documentation .. 120

Contacting ENOVIA ... 121

DesignSync Glossary .. 123

A ... 123

B ... 124

C .. 125

D .. 129

E ... 131

F ... 132

G .. 133

H .. 133

I .. 134

J ... 135

K ... 135

L ... 136

M .. 138

N .. 142

DesignSync Data Manager DFII SKILL Programming Interface Guide

viii

O .. 142

P ... 143

Q .. 145

R .. 145

S ... 149

T ... 152

U .. 154

V ... 155

W .. 156

X ... 157

Y ... 157

Z ... 157

Index ... 159

1

Release Information

Documentation
Release-specific information is located on the Dassault Systèmes support website in the
Program Directory (http://media.3ds.com/support/progdir/). The Program Directory
contains release-specific information for all major DesignSync releases beginning with
V6R2009x.

Selecting the appropriate release
1. Open the Program Directory (http://media.3ds.com/support/progdir/). You may be

required to enter your username and password to access information on the 3ds support
site.

2. Select the following options in the top bar:

Select Line: Version 6
Select Level: V6R2013
Select Sub-Level: (use default)

Note: By default, the sub-level is always the most current version of the Program
Directory files for the selected Level. There should never be a reason that
information you need for a release is not in the most current version.

Available Release-Specific Documentation
The documents listed in the following table are available.

Product Enhancement
Overview

Contains the list of new features and enhancements
for the release.

General and Open Issues Contains any known release issues, platform support
information, platform configuration information, and
system configuration recommendations for the
release.

Closed Issues Contains a complete list of closed issues for the
release.

Installation Installation instructions for DesignSync clients on all
supported platforms. For server configuration
information, see the ENOVIA Synchronicity
DesignSync Administrator's Guide.

Locating the Release Specific Documentation

DesignSync Data Manager DFII SKILL Programming Interface Guide

2

Product Enhancement Overview

1. In the left frame, select ENOVIA in the Product Enhancement Overview Section. This
opens the Product Enhancement Overview index in the right frame.

2. Navigate to the IP Work-in-Progress section and select Synchronicity DesignSync Data
Manager, or use your browser search functionality to search for Synchronicity
DesignSync Data Manager. Selecting Synchronicity DesignSync Data Manager
opens the Product Enhancement Overview for DesignSync.

General and Open Issues

1. In the left frame, select ENOVIA in the General and Open Issues Section
2. Navigate to the IP Work-in-Progress: Semiconductor EDA section and select

Synchronicity DesignSync Data Manager (SYN), or use your browser search
functionality to search for Synchronicity DesignSync Data Manager. Selecting
Synchronicity DesignSync Data Manager (SYN) opens the General and Open Issues
for DesignSync.

Closed Issues

1. In the left frame, select List of Closed Issues in the Closed Issues Section.
2. Use your browser search functionality to search for Synchronicity. This will bring you to

the section of the closed issues list that includes the following products:

Synchronicity DesignSync (including DSclipse, and DSVS plug-ins)
Synchronicity DesignSync Add-On for DFII
Synchronicity DesignSync Add-On for DSMW
Synchronicity DesignSync Add-On for DSCD
Synchronicity DesignSync Add-On for CTS
Synchronicity ProjectSync

Note: Not all releases include closed issues for all DesignSync products.

Installation

1. In the left frame, select ENOVIA Server in the Installation Section
2. Select ENOVIA Synchronicity DesignSync Data Manager in the navigation links at

the top of the page or use your browser search functionality to search for ENOVIA
Synchronicity DesignSync Data Manager.

3. Select the Installing Synchronicity DesignSync Data Manager link to open the
Installation document.

3

Introduction
ENOVIA Synchronicity DesignSync® Data Manager DFII(TM) is the integration of many
DesignSync® design-management (DM) capabilities into the Cadence Design Systems
DFII environment.

The DesignSync Data Manager DFII SKILL Programming Interface Guide contains
function descriptions for the DesignSync DFII SKILL ™ API functions available in the
DesignSync DFII environment. For general instruction on using DesignSync DFII, see
the DesignSync Data Manager DFII User's Guide. For a description of SKILL variables
you can set to customize your environment, see the DesignSync Data Manager DFII
User's Guide: Using SKILL Variables.

Syntax Conventions
The following syntax conventions are used in the SKILL syntax descriptions shown in
this document:

• z_argument: Words with a prefix containing one or more characters followed by
an underscore indicate arguments for which you must substitute a name or a
value. The characters before the underscore (_) in the word indicate the data
type that this argument can take. These data types include the following:

t: text; a string

l: list

S: symbol or character string

x: integer

g: general; usually a boolean (t/nil) value unless the description indicates
otherwise. Note that an argument with the g_ prefix can take any value, as in
SKILL, nil represents false and any other value represents true.

r

Arguments that accept more than one data type use a combination of the
characters above. For example, if an argument accepts a list or a text string, the
argument has the

: defstruct, a named structure that is a collection of one or more variables.

tl_

•

 prefix.

?argument: Words with a ? prefix are keyed arguments. If an argument is a
keyed argument, you include the key as well as the value for the key in the
function invocation as in the following example:

DesignSync Data Manager DFII SKILL Programming Interface Guide

4

All keyed arguments are optional. Note that key names are case sensitive.

dssCheckinCellP("rtllib" "top" ?force t)

• | Vertical bars separate possible choices for a single argument. They take
precedence over other characters.

• [] Brackets denote optional arguments. When used with vertical bars, they
enclose a list of choices from which you can choose one.

• ... Three dots (...) indicate that you can repeat the previous argument. If they
are used with brackets, you can specify zero or more arguments. If they are
used without brackets, you need to specify at least one argument, but you can
specify more.

argument... Specify at least one, but more are possible.

[argument]... Specify zero or more.

• => A right arrow precedes the possible values that can be returned by a SKILL
function. It is represented with an equal sign and a greater than sign (=>).

• / A slash separates the possible values that can be returned by a SKILL
function. Note

For more details about SKILL syntax, see the Cadence SKILL documentation.

: If no value is specified, the return value is undefined.

5

Error Handling and Diagnostics

Error Handling in Function Invocations
When a function is called, the SKILL interpreter checks its arguments, ensuring the
correct number and data types of arguments. If an argument's data type is
inappropriate, the SKILL interpreter raises an error. Note that an argument with the g_
prefix can take any value; as in SKILL, nil represents false and any other value
represents true. The SKILL interpreter also raises errors for invalid arguments, such as
an argument that specifies a nonexistent library.

If you need to handle these errors in a specific way, use the Cadence errset function
to trap errors returned by the DesignSync DFII SKILL functions. See the Cadence
SKILL documentation for a description of the errset function.

Setting a Trace
To create a trace of the DesignSync (stclc) session that runs beneath the DesignSync
DFII session, you can invoke the DesignSync synctrace command. To do so, call the
synctrace command from within the dssExecuteTclP function as follows:

dssExecuteTclP("synctrace set 0")

To turn off tracing:

dssExecuteTclP("synctrace unset 0")

See the synctrace command description in the ENOVIA Synchronicity Command
Reference for details.

Return Values
DesignSync DFII commands return a list of pass and fail counts. In general, the first
integer represents the number of objects processed successfully and the second integer
represents the number of failures. For commands that do not operate on a set of
objects, a single return value of t or nil is returned, indicating the success or failure of
the operation.

Return Values and Background Commands
Background commands do not necessarily run immediately and thus do not provide
meaningful return values immediately. DesignSync DFII adds new background
commands to the Background Queue. If you run DesignSync DFII commands in the

DesignSync Data Manager DFII SKILL Programming Interface Guide

6

background using the ?background option, the return value is (0,0)in the cases
where a pass/fail count is normally returned, and t in the cases where a t/nil value is
normally returned. The t value indicates that the DesignSync DFII successfully added
the command to the Background Queue.

Use the graphical interface command, Synchronicity => Options => Show
Background Queue to view the queue. In the Background Queue, DesignSync DFII
SKILL commands are differentiated from graphical interface commands by the
characters (API), which follow the command entry. See the DesignSync Data Manager
DFII User's Guide: Displaying the Background Queue for more information.

When the background SKILL command runs, DesignSync DFII outputs status
messages to the standard output window, for example, to the Command Interface
Window (CIW) if you invoked the background command in the CIW. If you run a
command in the background using a SKILL command with the ?background option
rather than through the graphical interface, DesignSync DFII does not display a pop-up
window when the command completes even if you have set the Display pop-up
windows when background operations complete option or the corresponding SKILL
variable: syncDisplayBackgroundCompletePopup.

7

Revision Control Functions

dssAddFileP
dssAddFileP(t_moduleName tl_fileNames [?silent g_silent])

=> nil/(x_pass x_fail)

Description

Adds specified objects to the specified module.

Arguments

t_moduleName The workspace address of the module. This can be a simple
module name, module instance name or full workspace address.
For more information on referring to modules, see Specifying
Module Objects for Operations in the DesignSync help.

t_fileNames One or more file object(s) to be added to the module. You can
add objects with wildcard characters.

g_silent Run silently (t). (Default) Command reports output (nil).

Value Returned

Function returns a count of the number of objects successfully added, and the number
which failed, unless there is an error processing the arguments.

dssBranchCellP
dssBranchCellP(
 t_libName t_cellName t_branchName
 [?checkLocked g_checkLocked]
 [?setSelector g_setSelector]
 [?silent g_silent]
)
=> t/nil

Description

Creates a branch for the specified cell.

Note: You cannot specify a module to branch.

Arguments

DesignSync Data Manager DFII SKILL Programming Interface Guide

8

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_branchName Branch name. (Required)
g_checkLocked Discontinue branching if there are checked out or new objects

(t). When set to (t), if any checked out or new objects are found,
then no objects will be branched. By default, branching
continues even if there are checked out or new objects (nil).

g_setSelector Set the persistent selector list to match the branch (t). By
default, the persistent selector list is not updated, so revision-
control operations continue on the branch associated with the
cell prior to creating the new branch (nil).

g_silent Run silently (t). (Default)

Value Returned

Returns t if the branch has been created successfully; otherwise, returns nil.

dssBranchCellViewP
dssBranchCellViewP(
 t_libName t_cellName t_viewName t_branchName
 [?checkLocked g_checkLocked] [?silent g_silent]
)
=> t/nil

Description

Creates a branch for the specified cell view.

Note: You cannot specify a module to branch.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_branchName Branch name. (Required)
g_checkLocked Discontinue branching if there are checked out or new objects

(t). When set to (t), if any checked out or new objects are found,
then no objects will be branched. By default, branching
continues even if there are checked out or new objects (nil).

g_silent Run silently (t). (Default)

Revision Control Functions

9

Value Returned

Returns t if the branch has been created successfully; otherwise, returns nil.

dssBranchLibraryP
dssBranchLibraryP(
 t_libName t_branchName [?checkLocked g_checkLocked]
 [?setSelector g_setSelector] [?silent g_silent]
)
=> t/nil

Description

Creates a branch for the specified library.

Note: You cannot specify a module to branch.

Arguments

t_libName Library name. (Required)
t_branchName Branch name. (Required)
g_checkLocked Discontinue branching if there are checked out or new objects

(t). When set to (t), if any checked out or new objects are found,
then no objects will be branched. By default, branching
continues even if there are checked out or new objects (nil).

g_setSelector Set the persistent selector list to match the branch (t). By
default, the persistent selector list is not updated, so revision-
control operations continue on the branch associated with the
workspace prior to creating the new branch (nil).

g_silent Run silently (t). (Default)

Value Returned

Returns t if the branch has been created successfully; otherwise, returns nil.

dssCancelCellViewP
dssCancelCellViewP(
 t_libName t_cellName t_viewName
 [?mode t_mode] [?force g_force]
 [?retain g_retain] [?silent g_silent]
 [?background g_background]

DesignSync Data Manager DFII SKILL Programming Interface Guide

10

)
=> nil/(x_pass x_fail)

Description

Cancels the checkout of a single cell view.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_mode Fetch mode ("keep", "share", or "mirror"). By default, the

mode matches the default fetch mode. If the default fetch mode
is "lock", the dssCancelCellViewP default for t_mode is
"keep". See the DesignSync Data Manager DFII User's
Guide:Selecting a Default Fetch Mode to learn how to set the
default fetch mode.

g_force Overwrite the cell view even if it is locally modified (t). If a cell
view is locally modified and you set t_mode to "share" or
"mirror", but you do not set g_force to t, the cancel
operation fails.

g_retain Retain the "last modified" timestamps of the objects that remain
in your workspace (t), or make the timestamps the time of the
cancel operation (nil). The default is nil unless defined
otherwise from SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (keep mode), and is silently
ignored otherwise.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Revision Control Functions

11

Returns a list of pass and fail counts; the first integer represents the number of
checkouts successfully canceled and the second integer represents the number of
failures. The dssCancelCellViewP function lets you cancel a single checkout, so the
returned list is (1 0) if the cancel is successful and (0 1) if the cancel fails. The function
raises an error if argument checking fails. In all other failure cases, the function either
raises an error or returns nil.

dssCancelFileP
dssCancelFileP(
 t_fileName [?mode t_mode] [?force g_force]
 [?retain g_retain] [?silent g_silent]
 [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Cancels the checkout of a single file.

You can specify an absolute or relative filename. Filenames can be relative to the
current working directory or to any library on the library path. For example, if library acc
is on your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A filename. (Required) A filename can be absolute or relative to
the current working directory or to any library on the library path.
Note: You must specify a filename; other file objects that resolve
to directories, libraries, cells, and views are not supported by the
dssCancelFileP function. Likewise, you cannot specify the
type of view object that DesignSync creates, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are not
actual files; thus, you cannot apply the dssCancelFileP
function to this type of object.

t_mode Fetch mode ("keep", "share", or "mirror"). By default, the
mode matches the default fetch mode. If the default fetch mode
is "lock", the dssCancelFileP default for t_mode is "keep".
See the DesignSync Data Manager DFII User's Guide:Selecting
a Default Fetch Mode to learn how to set the default fetch mode.

g_force Overwrite the file even if it is locally modified (t). If a file is

DesignSync Data Manager DFII SKILL Programming Interface Guide

12

locally modified and you set t_mode to "share" or "mirror",
but you do not set g_force to t, the cancel operation fails.

g_retain Retain the "last modified" timestamps of the objects that remain
in your workspace (t), or make the timestamps the time of the
cancel operation (nil). The default is nil unless defined
otherwise from SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (keep mode), and is silently
ignored otherwise.

g_silent Run silently (t). (Default)

g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of
checkouts successfully canceled and the second integer represents the number of
failures. The dssCancelFileP function lets you cancel a single checkout, so the
returned list is (1 0) if the cancel is successful and (0 1) if the cancel fails. The function
raises an error if argument checking fails. In all other failure cases, the function either
raises an error or returns nil.

dssCheckinCategoryP
dssCheckinCategoryP(
 t_libName tl_catNames [?viewNames l_viewNames]
 [?mode t_mode] [?force g_force] [?comment t_comment]
 [?skip g_skip] [?new g_new] [?nested g_nested]
 [?retain g_retain] [?silent g_silent] [?iflock g_lock]
 [?background g_background] [?branch t_branch] [?tag g_tag]
)
=> nil/(x_pass x_fail)

Description

Revision Control Functions

13

Checks in objects of one or more categories. You can check in all the objects in a
category at one time or specify views to check in.

Arguments

t_libName Library name. (Required)
tl_catNames One or more category names. (Required)
l_viewNames One or more view name(s) to be checked in. (Optional). Checks

in all views by default.
t_mode Check-in mode ("lock", "share", "mirror", or "keep"). By

default, the mode matches the default fetch mode. See the
DesignSync Data Manager DFII User's Guide:Selecting a
Default Fetch Mode to learn how to set the default fetch mode.

g_force Force a checkin to create a new version in the vault (t). By
default, DesignSync DFII does not force a checkin (nil).

t_comment Check-in comment. By default, no check-in comment is
supplied. However, if DesignSync DFII has been configured to
require a comment of a particular length, a check-in comment is
required.

g_skip Skip version (t). By default, version skipping is not allowed
(nil).

g_new Allow new (or retired) items to be checked in (t). By default,
checking in new items is not allowed (nil).

g_nested Apply to nested category contents (t). (Default)

Note: If g_nested is set to t but one or more nested category
files are missing from your workspace, DesignSync DFII
automatically fetches the missing category files and processes
the specified objects.

g_retain Retain the "last modified" timestamps of the objects that remain
in your workspace (t), or make the timestamps the check-in
time (nil). The default is nil unless defined otherwise from
SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (lock and keep modes),
and is silently ignored otherwise.

g_silent Run silently (t). (Default)
g_iflock Specifies whether to check in all modified objects in the

workspace (f) (default) or only targeted files (t). Targeted files
include: locked DesignSync vault files or module members and
added, renamed, or removed module objects.

g_background Run command in the background (t). By default, commands

DesignSync Data Manager DFII SKILL Programming Interface Guide

14

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_branch Checks the object into the specified branch, rather than
checking the object into the branch it was checked out from. The
branch tag can be any valid branch selector, including
auto(branchname).

Note: This option is not applicable to modules. If used with the -
modulecontext option, or on module data, the command fails
with an appropriate error.

g_tag Tags the object version or module version on the server with the
specified tag name.

For module objects, all objects are evaluated before the checkin
begins. If the module cannot be tagged, for example if the user
does not have access to add a tag or because the tag exists and
is immutable, the entire module checkin fails.

Note: Individual module objects cannot have tags. Only the
module itself can be tagged.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckinCellP
dssCheckinCellP(
 t_libName tl_cellNames [?viewNames l_viewNames]
 [?mode t_mode] [?force g_force] [?comment t_comment]
 [?skip g_skip] [?new g_new] [?retain g_retain]
 [?silent g_silent] [?background g_background]
 [?branch t_branch] [?iflock g_lock] [?tag g_tag]
)
=> nil/(x_pass x_fail)

Revision Control Functions

15

Description

Checks in one or more cells, either all the objects in each cell or a specified set of cell
views.

Arguments

t_libName Library name. (Required)
tl_cellNames One or more cell name(s) to be checked in. (Required)
l_viewNames One or more view name(s) to be checked in. (Optional). Checks

in all views by default.
t_mode Check-in mode ("lock", "share", "mirror", or "keep"). By

default, the mode matches the default fetch mode. See the
DesignSync Data Manager DFII User's Guide:Selecting a
Default Fetch Mode to learn how to set the default fetch mode.

g_force Force a checkin to create new versions in the vault (t). By
default, DesignSync DFII does not force a checkin (nil).

t_comment Check-in comment. By default, no check-in comment is
supplied. However, if DesignSync DFII has been configured to
require a comment of a particular length, a check-in comment is
required.

g_skip Skip version (t). By default, version skipping is not allowed
(nil).

g_new Allow new (or retired) items to be checked in (t). By default,
checking in new items is not allowed (nil).

g_retain Retain the "last modified" timestamps of the objects that remain
in your workspace (t), or make the timestamps the check-in
time (nil). The default is nil unless defined otherwise from
SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (lock and keep modes),
and is silently ignored otherwise.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_branch Checks the object into the specified branch, rather than

DesignSync Data Manager DFII SKILL Programming Interface Guide

16

checking the object into the branch it was checked out from. The
branch tag can be any valid branch selector, including
auto(branchname).

Note: This option is not applicable to modules. If used with the -
modulecontext option, or on module data, the command fails
with an appropriate error.

g_iflock Specifies whether to check in all modified objects in the
workspace (f) (default) or only targeted files (t). Targeted files
include: locked DesignSync vault files or module members and
added, renamed, or removed module objects.

g_tag Tags the object version or module version on the server with the
specified tag name.

For module objects, all objects are evaluated before the checkin
begins. If the module cannot be tagged, for example if the user
does not have access to add a tag or because the tag exists and
is immutable, the entire module checkin fails.

Note: Individual module objects cannot have tags. Only the
module itself can be tagged.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckinCellViewP
dssCheckinCellViewP(
 t_libName t_cellName t_viewName [?mode t_mode]
 [?force g_force] [?comment t_comment] [?skip g_skip]
 [?new g_new] [?silent g_silent] [?background g_background]
 [?branch t_branch] [?iflock g_lock] [?tag g_tag]
)
=> nil/(x_pass x_fail)

Description

Checks a cell view into the specified library.

Arguments

Revision Control Functions

17

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_mode Check-in mode (lock , share, mirror, or keep). By default,

the mode matches the default fetch mode. See DesignSync
DFII Help:Selecting a Default Fetch Mode to learn how to set
the default fetch mode.

g_force Force a checkin to create a new version in the vault (t). By
default, DesignSync DFII does not force a checkin (nil).

t_comment Provide a check-in comment. By default, no check-in comment
is supplied. However, if DesignSync DFII has been configured
to require a comment of a particular length, a check-in
comment is required.

g_skip Skip version (t). By default, version skipping is not allowed
(nil).

g_new Allow new (or retired) items to be checked in (t). By default,
checking in new items is not allowed (nil).

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_branch Checks the object into the specified branch, rather than
checking the object into the branch it was checked out from.
The branch tag can be any valid branch selector, including
auto(branchname).

Note: This option is not applicable to modules. If used with the
-modulecontext option, or on module data, the command fails
with an appropriate error.

g_iflock Specifies whether to check in all modified objects in the
workspace (f) (default) or only targeted files (t). Targeted files
include: locked DesignSync vault files or module members and
added, renamed, or removed module objects.

g_tag Tags the object version or module version on the server with
the specified tag name.

For module objects, all objects are evaluated before the
checkin begins. If the module cannot be tagged, for example if

DesignSync Data Manager DFII SKILL Programming Interface Guide

18

the user does not have access to add a tag or because the tag
exists and is immutable, the entire module checkin fails.

Note: Individual module objects cannot have tags. Only the
module itself can be tagged.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The
dssCheckinCellViewP function lets you check-in a single cell view only, so the
returned list is (1 0) if the check-in operation is successful and (0 1) if the check-in
operation fails. The function raises an error if argument checking fails. In all other
failure cases, the function either raises an error or returns nil.

dssCheckinFileP
dssCheckinFileP
 (tl_fileNames [?mode t_mode] [?force g_force]
 [?comment t_comment] [?skip g_skip] [?new g_new]
 [?retain g_retain] [?silent g_silent] [?tag g_tag]
 [?background g_background][?recursive g_recursive]
 [?branch t_branch] [?iflock g_lock]
 [?moduleContext t_moduleContext]
)
=> nil/(x_pass x_fail)

Description

Checks in one or more file objects.

You can specify absolute or relative filenames to be checked in. Filenames can be
relative to the current working directory or to any library on the library path. For
example, if library acc is on your library path, then you can specify the cdsinfo.tag
file for that library as acc/cdsinfo.tag, even though the acc library directory might
be anywhere on disk. If a library name exists, and there is also a directory within the
current working directory of the same name, the library name is used.

Specify wildcards for filenames using glob-style expressions.

Note:

For wildcards, filenames in the current working directory take precedence over library
names. That is, a glob expression of lib* will not match libraries libA and libB if
similarly named files exist in the current working directory; the dssCheckinFileP

Revision Control Functions

19

function first expands regular expressions against the current directory, and then
performs library matching.

Arguments

tl_fileNames One or more file object(s) to be checked in. (Required) You
can specify file objects as glob-style expressions. A file object
can be:

A filename, specified as a full path or a path relative to the
current working directory.

A filename, specified relative to a library, for example
<libname>/cdsinfo.tag or
<libname>/cellname/prop.xx.

A directory name, either a full path or a path relative to the
current working directory.

A library name.

A cell name, specified as <libname>/<cellname>.

A view name, specified as
<libname>/<cellname>/<viewname>.

A module name.

Note: DesignSync creates objects called <name>.sync.cds
to represent Cadence views, where <name> corresponds to
the name of the view folder, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are not
actual files; thus, you cannot apply the dssCheckinFileP
function to this type of object.

t_mode Check-in mode ("lock", "share", "mirror", or "keep"). By
default, the mode matches the default fetch mode. See the
DesignSync Data Manager DFII User's Guide:Selecting a
Default Fetch Mode to learn how to set the default fetch mode.

g_force Force a checkin to create new versions in the vault (t). By
default, DesignSync DFII does not force a checkin (nil).

t_comment Check-in comment. By default, no check-in comment is
supplied. However, if DesignSync DFII has been configured to
require a comment of a particular length, a check-in comment
is required.

DesignSync Data Manager DFII SKILL Programming Interface Guide

20

g_skip Skip version (t). By default, version skipping is not allowed
(nil).

g_new Allow new (or retired) items to be checked in (t). By default,
checking in new items is not allowed (nil).

g_retain Retain the "last modified" timestamps of the objects that
remain in your workspace (t), or make the timestamps the
check-in time (nil). The default is nil unless defined
otherwise from SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (lock and keep modes),
and is silently ignored otherwise.

g_silent Run silently (t). (Default)
g_tag Tags the object version or module version on the server with

the specified tag name.

For module objects, all objects are evaluated before the
checkin begins. If the module cannot be tagged, for example if
the user does not have access to add a tag or because the tag
exists and is immutable, the entire module checkin fails.

Note: Individual module objects cannot have tags. Only the
module itself can be tagged.

g_background Run command in the background (t). By default, commands
run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

g_recursive Run checkin recursively (t). (Default)

Note: If you check in a folder, you must specify recursive to
check in the contents of the folder.

t_branch Checks the object into the specified branch, rather than
checking the object into the branch it was checked out from.
The branch tag can be any valid branch selector, including
auto(branchname).

Note: This option is not applicable to modules. If used with the
-modulecontext option, or on module data, the command fails
with an appropriate error.

g_iflock Specifies whether to check in all modified objects in the

Revision Control Functions

21

workspace (f) (default) or only targeted files (t). Targeted files
include: locked DesignSync vault files or module members and
added, renamed, or removed module objects.

t_moduleContext If you are checking in objects to two different modules in the
same workspace, use two separate checkin operations.

The module context to restrict the operation to. The module
must have its base directory at, or above, the level of the
library being checked in.

If you do not specify a module context, the operation applies to
all objects specified.

Note: You can only specify one module.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckinHierarchyP
dssCheckinHierarchyP(
 t_libName t_cellName tl_viewNames
 [?switchUsing t_switchUsing]
 [?switchList l_switchList] [?stopList l_stopList]
 [?switchLibChoice S_switchLibChoice]
 [?switchLibNames l_switchLibNames]
 [?processViews gl_processViews]
 [?processFiles gS_processFiles]
 [?tag g_tag] [?mode t_mode] [?silent g_silent]
 [?comment t_comment] [?force g_force] [?iflock g_lock]
 [?new g_new] [?skip g_skip] [?retain g_retain]
 [?branch t_branch] [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Checks objects into a design hierarchy. To identify the cells in a design hierarchy,
DesignSync DFII scans the hierarchy, beginning with the top-level cell views you specify
using the tl_viewNames argument. Then, DesignSync DFII descends into the views
indicated by the t_switchUsing argument. You can use the t_switchUsing

DesignSync Data Manager DFII SKILL Programming Interface Guide

22

argument to specify that DesignSync DFII descend into one or more views you specify
in a switch list (using the l_switchList argument). You can instead have
DesignSync DFII descend into all instantiated views or all views that exist for a cell by
setting the t_switchUsing argument to "instantiatedView" or "allViews",
respectively. Use the l_stopList argument to indicate at which views DesignSync
DFII is to stop scanning. DesignSync DFII also offers other hierarchy controls, such as
limiting which libraries are scanned using the S_switchLibChoice argument and
limiting which views are checked in using the g_processViews argument.

Notes:

• For DesignSync DFII to scan the hierarchy, the cells must be in your local
workspace.

• DesignSync DFII does not scan through libraries that have been filtered out using
the l_switchLibNames argument. For example, suppose a cell in library_1
references a cell in library_2, which references a cell in library_3. If library_2 is
filtered out in the l_switchLibNames

Arguments

 argument, the cell in library_3 is not
found.

t_libName Top library name of hierarchy to be checked in. (Required)
t_cellName Top cell name of hierarchy to be checked in. (Required)
tl_viewNames Top-level view names of hierarchies to be checked in.

(Required)
Can be given a single view, a string, or a list of views.

t_switchUsing Indicates how the design hierarchy is to be traversed.
Specify one of the following:

• "firstSwitchList": As the design is traversed,
DesignSync DFII descends into the first view
specified in the switch list that exists for a cell.
Specify the switch list using the l_switchList

•

argument. (Default)
"allSwitchList": As the design is traversed,
DesignSync DFII descends into each view of the cell
in the workspace that matches a view in the switch
list. Specify the switch list using the l_switchList

•

argument.
"instantiatedView": As the design is traversed,
DesignSync DFII descends into each instantiated
view. The l_switchList

•

 argument is ignored in
this case.
"allViews": As the design is traversed,
DesignSync DFII descends into each view of the cell

Revision Control Functions

23

in the workspace that exists for each cell. The
l_switchList

l_switchList

 argument is ignored in this case.

Names of the views to be scanned to identify the design
hierarchy. The l_switchList argument is required if you
specify the "firstSwitchList" or "allSwitchList"
values using the t_switchUsing argument. If the
t_switchUsing argument is set to "instantiatedView"
or "allViews", this argument is ignored.

l_stopList Names of views at which the hierarchy scanning should
stop. As the design is traversed, if the l_switchList view
being scanned is also in this list, scanning stops.

S_switchLibChoice Specifies which libraries to enter as the hierarchy is
scanned:

• all
•

: Enter all libraries. (Default)
only: Enter only the libraries specified by the
l_switchLibNames

•
 argument.

not: Enter all libraries except those specified by the
l_switchLibNames

l_switchLibNames

 argument.

Library names controlled by the S_switchLibChoice
argument. You need not include this argument if all is
selected as the S_switchLibChoice argument.

g_processViews Once you have identified the hierarchy using the
t_switchUsing argument, as well as the switch list and
stop list if necessary, specify the views of the identified cells
to be processed:

• t
•

: Process all views that exist for the cell.
nil

• List of views to process.

: Process only the single view switched into.
(Default)

gS_processFiles Specifies whether cell- and library-level files are processed
in addition to the specified cell views:

• nil

•

: No cell- or library-level files are processed.
(Default)
cell

•

: Cell-level files are processed, but library-level
files are not. This option selects only cell-level files for
those cells on which you are operating.
library: Cell- and library-level files are processed.

DesignSync Data Manager DFII SKILL Programming Interface Guide

24

t_tag Tags the object version or module version on the server with
the specified tag name.

For module objects, all objects are evaluated before the
checkin begins. If the module cannot be tagged, for
example if the user does not have access to add a tag or
because the tag exists and is immutable, the entire module
checkin fails.

Note: Individual module objects cannot have tags. Only the
module itself can be tagged.

t_mode Check-in mode (lock , share, mirror, or keep). By
default, the mode matches the default fetch mode. See
DesignSync DFII Help:Selecting a Default Fetch Mode to
learn how to set the default fetch mode.

g_silent Run silently (t). (Default)
t_comment Check-in comment. By default, no check-in comment is

supplied. However, if DesignSync DFII has been configured
to require a comment of a particular length, a check-in
comment is required.

g_force Overwrite locally modified files in your workspace (t). By
default, local changes are not overwritten when you check
out files (nil).

g_iflock Specifies whether to check in all modified objects in the
workspace (f) (default) or only targeted files (t). Targeted
files include: locked DesignSync vault files or module
members and added, renamed, or removed module objects.

g_new Allow new (or retired) items to be checked in (t). By
default, checking in new items is not allowed (nil).

g_skip Skip version (t). By default, version skipping is not allowed
(nil).

g_retain Retain the "last modified" timestamps of the objects that
remain in your workspace (t), or make the timestamps the
check-in time (nil). The default is nil unless defined
otherwise from SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (lock and keep
modes), and is silently ignored otherwise.

t_branch Checks the object into the specified branch, rather than
checking the object into the branch it was checked out from.
The branch tag can be any valid branch selector, including
auto(branchname).

Revision Control Functions

25

Note: This option is not applicable to modules. If used with
the -modulecontext option, or on module data, the command
fails with an appropriate error.

g_background Run command in the background (t). By default,
commands run in the foreground (nil). DesignSync DFII
adds background commands to the Background Queue.
Use the graphical interface command,
Synchronicity => Options => Show Background Queue
to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckinLibraryP
dssCheckinLibraryP(
 t_libName [?viewNames l_viewNames] [?mode t_mode]
 [?force g_force][?comment t_comment] [?skip g_skip]
 [?new g_new] [?retain g_retain] [?silent g_silent]
 [?background g_background] [?moduleContext t_moduleContext]
 [?branch t_branch] [?iflock g_lock] [?tag g_tag]
)
=> nil/(x_pass x_fail)

Description

Checks in a library, either all the objects in the library or a specified list of cell views.

Arguments

t_libName Library name. (Required)
l_viewNames One or more view name(s) to be checked in. (Optional).

Checks in all views by default.
t_mode Check-in mode ("lock", "share", "mirror", or "keep"). By

default, the mode matches the default fetch mode. See the
DesignSync Data Manager DFII User's Guide:Selecting a

DesignSync Data Manager DFII SKILL Programming Interface Guide

26

Default Fetch Mode to learn how to set the default fetch mode.
g_force Force a checkin to create new versions in the vault (t). The

default is nil.
t_comment Check-in comment. By default, no check-in comment is

supplied. However, if DesignSync DFII has been configured to
require a comment of a particular length, a check-in comment
is required.

g_skip Skip version (t). By default, version skipping is not allowed
(nil).

g_new Allow new (or retired) items to be checked in (t). By default,
checking in new items is not allowed (nil).

g_retain Retain the "last modified" timestamps of the objects that
remain in your workspace (t), or make the timestamps the
check-in time (nil). The default is nil unless defined
otherwise from SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when leaving physical
copies of objects in your workspace (lock and keep modes),
and is silently ignored otherwise.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_moduleContext The module context to restrict the operation to. The module
must have its base directory at, or above, the level of the
library being checked in.

 Note: You can only specify one module. If you
are checking in objects to two different modules in the same
workspace, use two separate checkin operations.

If you do not specify a module context, the operation applies to
all objects specified.

t_branch Checks the object into the specified branch, rather than

Revision Control Functions

27

checking the object into the branch it was checked out from.
The branch tag can be any valid branch selector, including
auto(branchname).

Note: This option is not applicable to modules. If used with the
-modulecontext option, or on module data, the command fails
with an appropriate error.

g_iflock Specifies whether to check in all modified objects in the
workspace (f) (default) or only targeted files (t). Targeted files
include: locked DesignSync vault files or module members and
added, renamed, or removed module objects.

t_tag Tags the object version or module version on the server with
the specified tag name.

For module objects, all objects are evaluated before the
checkin begins. If the module cannot be tagged, for example if
the user does not have access to add a tag or because the tag
exists and is immutable, the entire module checkin fails.

Note: Individual module objects cannot have tags. Only the
module itself can be tagged.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked in and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckoutCategoryP
dssCheckoutCategoryP(
 t_libName tl_catNames [?viewNames l_viewNames]
 [?mode t_mode] [?tag t_tag] [?force g_force]
 [?overlay g_overlay][?nested g_nested] [?all g_all]
[?retain g_retain] [?unifyState g_unifyState]
[?silent g_silent] [?background g_background]
)
> nil/(x_pass x_fail)

Description

Checks out objects of one or more categories. You can check out all the objects in a
category at one time or specify views to check out.

DesignSync Data Manager DFII SKILL Programming Interface Guide

28

Arguments

t_libName Library name. (Required)
tl_catNames One or more category names. (Required)
l_viewNames One or more view name(s) to be checked out. (Optional).

Checks out all views by default.
t_mode Check-out mode ("lock", "share", "mirror", "get", or

"lockref"). By default, the mode matches the default fetch
mode. See the DesignSync Data Manager DFII User's
Guide:Selecting a Default Fetch Mode to learn how to set the
default fetch mode.

t_tag Selector, or version name, to be checked out. By default, no
selector is specified, in which case the persistent selector list
determines the version -- typically the latest version on the
current branch. See DesignSync Data Manager User's Guide to
learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version. Use the t_ version
option to specify a module member version. t_version and
t_tag are mutually incompatible.

g_force Overwrite locally modified files in your workspace (t). By default,
local changes are not overwritten when you check out files
(nil).

g_overlay Fetch a version of a design object from another branch and
overlay it on the version you have checked out in your
workspace (t). By default, an overlay is not performed (nil).
 Note: This option is available only if t_mode is set to "get".

g_nested Apply to nested category contents (t). (Default)

Note: If g_nested is set to t but one or more nested category
files are missing from your workspace, DesignSync DFII
automatically fetches the missing category files and processes
the specified objects.

g_all Check out all matching category objects (t), even those objects
that are not in your local workspace. (Default) If set to nil,
checks out only those objects that are already in your local
workspace.

g_retain Retain the "last modified" timestamps of the checked-out objects
as recorded when the object was checked into the vault (t), or
make the timestamps the check-out time (nil). The default is
nil unless defined otherwise from SyncAdmin (see SyncAdmin
Help).

Revision Control Functions

29

The retain option is only meaningful when checking out physical
copies (lock and get modes) and is silently ignored otherwise.

g_unifyState Put objects in the state specified by t_mode even if the
workspace already contains the requested version and therefore
no checkout is required (t). By default (nil), a check-out
operation only changes the states of objects that are fetched
from the vault.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckoutCellP
dssCheckoutCellP(
 t_libName tl_cellNames [?viewNames l_viewNames]
 [?mode t_mode] [?tag t_tag] [?force g_force]
[?overlay g_overlay] [?retain g_retain]
[?unifyState g_unifyState] [?silent g_silent]
[?background g_background]
)
=> nil/(x_pass x_fail)

Description

Checks out one or more cells, either all the objects in each cell or a specified set of cell
views.

Arguments

t_libName Library name. (Required)

DesignSync Data Manager DFII SKILL Programming Interface Guide

30

tl_cellNames One or more cell name(s) to be checked out. (Required)
l_viewNames One or more view name(s) to be checked out. (Optional).

Checks out all views by default.
t_mode Check-out mode ("lock", "share", "mirror", "get", or

"lockref"). By default, the mode matches the default fetch
mode. See the DesignSync Data Manager DFII User's
Guide:Selecting a Default Fetch Mode to learn how to set the
default fetch mode.

t_tag Selector, or version name, to be checked out. By default, no
selector is specified, in which case the persistent selector list
determines the version -- typically the latest version on the
current branch. See DesignSync Data Manager User's Guide to
learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version.

g_force Overwrite locally modified files in your workspace (t). By default,
local changes are not overwritten when you check out files
(nil).

g_overlay Fetch a version of a design object from another branch and
overlay it on the version you have checked out in your
workspace (t). By default, an overlay is not performed (nil).
 Note: This option is available only if t_mode is set to "get".

g_retain Retain the "last modified" timestamps of the checked-out objects
as recorded when the object was checked into the vault (t), or
make the timestamps the check-out time (nil). The default is
nil unless defined otherwise from SyncAdmin (see SyncAdmin
Help).

The retain option is only meaningful when checking out physical
copies (lock and get modes) and is silently ignored otherwise.

g_unifyState Put objects in the state specified by t_mode even if the
workspace already contains the requested version and therefore
no checkout is required (t). By default (nil), a check-out
operation only changes the states of objects that are fetched
from the vault.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and

Revision Control Functions

31

Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckoutCellViewP
dssCheckoutCellViewP(
 t_libName t_cellName t_viewName
[?tag t_tag] [?vaultVersion t_vaultVersion]
 [?mode t_mode] [?force g_force] [?overlay g_overlay]
[?retain g_retain] [?unifyState g_unifyState]
[?silent g_silent] [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Checks out a single cell view.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_tag Selector, or version name, to be checked out. By default, no

selector is specified, in which case the persistent selector list
determines the version -- typically the latest version on the
current branch. See DesignSync Data Manager User's Guide to
learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version. Use the t_ version
option to specify a module member version. t_version and
t_tag are mutually incompatible.

t_vaultVersion Version number of the module member object to be checked
out.

Note: The t_version and t_tag options are mutually

DesignSync Data Manager DFII SKILL Programming Interface Guide

32

incompatible.
t_mode Check-out mode ("lock", "share", "mirror", "get", or

"lockref"). By default, the mode matches the default fetch
mode. See the DesignSync Data Manager DFII User's
Guide:Selecting a Default Fetch Mode to learn how to set the
default fetch mode.

g_force Overwrite locally modified files in your workspace (t). By
default, local changes are not overwritten when you check out
files (nil).

g_overlay Fetch a version of a design object from another branch and
overlay it on the version you have checked out in your
workspace (t). By default, an overlay is not performed (nil).
 Note: This option is available only if t_mode is set to "get".

g_retain Retain the "last modified" timestamp of the checked-out view
view as recorded when the view was checked into the vault (t),
or make the timestamp the check-out time (nil). The default is
nil unless defined otherwise from SyncAdmin (see SyncAdmin
Help).

The retain option is only meaningful when checking out physical
copies (lock and get modes) and is silently ignored otherwise.

g_unifyState Put the view in the state specified by t_mode even if the
workspace already contains the requested version and therefore
no checkout is required (t). By default (nil), a check-out
operation only changes the states of objects that are fetched
from the vault.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
dssCheckoutCellViewP function lets you check out a single cell view only, so the
returned list is (1 0) if the checkout is successful and (0 1) if the checkout fails. The

Revision Control Functions

33

function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckoutFileP
dssCheckoutFileP(
 tl_fileNames [?mode t_mode] [?tag t_tag]
 [?force g_force] [?incremental g_incremental]
[?overlay g_overlay] [?retain g_retain]
[?unifyState g_unifyState][?silent g_silent]
[?recursive g_recursive] [?background g_background]
[?moduleContext t_moduleContext]
)
=> nil/(x_pass x_fail)

Description

Checks out one or more file objects.

You can specify absolute or relative filenames to be checked out. Filenames can be
relative to the current working directory or to any library on the library path. For
example, if library acc is on your library path, then you can specify the cdsinfo.tag
file for that library as acc/cdsinfo.tag, even though the acc library directory might
be anywhere on disk. If a library name exists, and there is also a directory within the
current working directory of the same name, the library name is used.

Specify wildcards for filenames using glob-style expressions.

Note:

For wildcards, filenames in the current working directory take precedence over library
names. That is, a glob expression of lib* will not match libraries libA and libB if
similarly named files exist in the current working directory; the dssCheckoutFileP
function first expands regular expressions against the current directory, and then
performs library matching.

Arguments

tl_fileNames One or more file object(s) to be checked out. (Required) You
can specify file objects as glob-style expressions. A file object
can be:

A filename, specified as a full path or a path relative to the
current working directory.

DesignSync Data Manager DFII SKILL Programming Interface Guide

34

A filename, specified relative to a library, for example
<libname>/cdsinfo.tag or
<libname>/cellname/prop.xx.

A directory name, either a full path or a path relative to the
current working directory.

A library name.

A cell name, specified as <libname>/<cellname>.

A view name, specified as
<libname>/<cellname>/<viewname>.

Note: DesignSync creates objects called <name>.sync.cds
to represent Cadence views, where <name> corresponds to
the name of the view folder, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are not
actual files; thus, you cannot apply the dssCheckoutFileP
function to this type of object.

t_mode Check-out mode ("lock", "share", "mirror", "get", or
"lockref"). By default, the mode matches the default fetch
mode. See DesignSync DFII Help: Selecting a Default Fetch
Mode to learn how to set the default fetch mode.

Note: Because lockref mode should only be used when you
are regenerating data, it is not an appropriate mode for all
object types. For example, lockref is likely not appropriate
for library-level files such as prop.xx, cdsinfo.tag, and
category files.

t_tag Selector, or version name, to be checked out. By default, no
selector is specified, in which case the persistent selector list
determines the version -- typically the latest version on the
current branch. See DesignSync Data Manager User's Guide
to learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version.

g_force Overwrite locally modified objects in your workspace (t). By
default, local changes are not overwritten when you check out
objects (nil).

g_incremental Perform incremental (t) or full (nil) populate. If not provided,
incremental behavior is determined by SyncAdmin setting (see
SyncAdmin Help).

Revision Control Functions

35

g_overlay Fetch a version of an object from another branch and overlay it
on the version you have checked out in your workspace (t). By
default, an overlay is not performed (nil). Note: This option is
available only if t_mode is set to "get".

g_retain Retain the "last modified" timestamps of the checked-out
objects as recorded when the object was checked into the
vault (t), or make the timestamps the check-out time (nil).
The default is nil unless defined otherwise from SyncAdmin
(see SyncAdmin Help).

The retain option is only meaningful when checking out
physical copies (lock and get modes) and is silently ignored
otherwise.

g_unifyState Put objects in the state specified by t_mode even if the
workspace already contains the requested version and
therefore no checkout is required (t). By default (nil), a
check-out operation only changes the states of objects that are
fetched from the vault.

g_silent Run silently (t). (Default)
g_recursive Check out all objects in each specified directory, as well as its

subdirectories (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_moduleContext The module context to restrict the operation to. The module
must have its base directory at, or above, the level of the
object being checked out.

If you do not specify a module context, the operation applies to
all objects specified.

Note: You can only specify one module. If you are checking
out objects to two different modules in the same workspace,
use two separate checkout operations.

DesignSync Data Manager DFII SKILL Programming Interface Guide

36

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckoutHierarchyP
dssCheckoutHierarchyP(
 t_libName t_cellName tl_viewNames
 [?switchUsing t_switchUsing]
 [?switchList l_switchList] [?mode t_mode]
 [?force g_force] [?tag t_tag]
 [?overlay g_overlay] [?retain g_retain]
 [?unifyState g_unifyState] [?stopList l_stopList]
 [?fetchMissingCells g_fetchMissingCells]
 [?switchLibChoice S_switchLibChoice]
 [?switchLibNames l_switchLibNames]
 [?processViews gl_processViews]
 [?processFiles gS_processFiles] [?silent g_silent]
 [?background g_background]
)

Description

=> nil/(x_pass x_fail)

Checks out objects of a design hierarchy. To identify the cells in a design hierarchy,
DesignSync DFII scans the hierarchy, beginning with the top-level cell views you specify
using the tl_viewNames argument. Then, DesignSync DFII descends into the views
indicated by the t_switchUsing argument. You can use the t_switchUsing
argument to specify that DesignSync DFII descend into one or more views you specify
in a switch list (using the l_switchList argument). You can instead have
DesignSync DFII descend into all instantiated views or all views that exist for a cell by
setting the t_switchUsing argument to "instantiatedView" or "allViews",
respectively. Use the l_stopList argument to indicate at which views DesignSync
DFII is to stop scanning. DesignSync DFII also offers other hierarchy controls, such as
limiting which libraries are scanned using the S_switchLibChoice argument and
limiting which views are checked in using the g_processViews argument.

Notes:

• For DesignSync DFII to scan the hierarchy, the cells must be in your local
workspace.

Revision Control Functions

37

• DesignSync DFII does not scan through libraries that have been filtered out using
the l_switchLibNames argument. For example, suppose a cell in library_1
references a cell in library_2, which references a cell in library_3. If library_2 is
filtered out in the l_switchLibNames

Arguments

 argument, the cell in library_3 is not
found.

t_libName Top library name of hierarchy to be checked out.
(Required)

t_cellName Top cell name of hierarchy to be checked out. (Required)
tl_viewNames Top-level view names of hierarchies to be checked out.

(Required)
Can be given a single view, a string, or a list of views.

t_switchUsing Indicates how the design hierarchy is to be traversed.
Specify one of the following:

• "firstSwitchList": As the design is traversed,
DesignSync DFII descends into the first view
specified in the switch list that exists for a cell.
Specify the switch list using the l_switchList

•

argument. (Default)
"allSwitchList": As the design is traversed,
DesignSync DFII descends into each view of the
cell in the workspace that matches a view in the
switch list. Specify the switch list using the
l_switchList

•
 argument.

"instantiatedView": As the design is
traversed, DesignSync DFII descends into each
instantiated view. The l_switchList

•

 argument
is ignored in this case.
"allViews": As the design is traversed,
DesignSync DFII descends into each view of the
cell in the workspace that exists for each cell. The
l_switchList

l_switchList

 argument is ignored in this case.

Names of the views to be scanned to identify the design
hierarchy. The l_switchList argument is required if
you specify the "firstSwitchList" or
"allSwitchList" values using the t_switchUsing
argument. If the t_switchUsing argument is set to
"instantiatedView" or "allViews", this argument
is ignored.

t_mode Check-out mode ("lock", "share", "mirror", "get", or

DesignSync Data Manager DFII SKILL Programming Interface Guide

38

"lockref"). By default, the mode matches the default
fetch mode. See DesignSync DFII Help:Selecting a
Default Fetch Mode to learn how to set the default fetch
mode.

g_force Overwrite locally modified files in your workspace (t). By
default, local changes are not overwritten when you
check out files (nil).

t_tag Selector, or version name, to be checked out. By default,
no selector is specified, in which case the persistent
selector list determines the version -- typically the latest
version on the current branch. See DesignSync Data
Manager User's Guide to learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version.

g_overlay Fetch a version of a design object from another branch
and overlay it on the version you have checked out in
your workspace (t). By default, an overlay is not
performed (nil). Note: This option is available only if
t_mode is set to "get".

g_retain Retain the "last modified" timestamps of the checked-out
objects as recorded when the object was checked into
the vault (t), or make the timestamps the check-out time
(nil). The default is nil unless defined otherwise from
SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when checking out
physical copies (lock and get modes) and is silently
ignored otherwise.

g_unifyState Put objects in the state specified by t_mode even if the
workspace already contains the requested version and
therefore no checkout is required (t). By default (nil), a
check-out operation only changes the states of objects
that are fetched from the vault.

l_stopList Names of views at which the hierarchy scanning should
stop. As the design is traversed, if the l_switchList
view being scanned is also in this list, scanning stops.

g_fetchMissingCells Fetch cells in the hierarchy that are not present in the
workspace (t). By default, a hierarchical checkout only
fetches cells in your workspace (nil). Enabling this
option also fetches missing views corresponding to the
cells in the workspace.

Select this option to check out the entire hierarchy, even

Revision Control Functions

39

if some cells are not currently in your workspace. The
checkout can be significantly slower, but it ensures that
the entire hierarchy is checked out. The checkout is
iterative -- if cells or views are missing, DesignSync DFII
fetches those objects and then scans the hierarchy again
in order to fetch objects referenced by the missing views
and cells. This iterative scanning continues until all of the
missing cells and views have been fetched.

S_switchLibChoice Specifies which libraries to enter as the hierarchy is
scanned:

• all
•

: Enter all libraries. (Default)
only: Enter only the libraries specified by the
l_switchLibNames

•
 argument.

not: Enter all libraries except those specified by
the l_switchLibNames

l_switchLibNames

 argument.

Library names controlled by the S_switchLibChoice
argument. You need not include this argument if all is
selected as the S_switchLibChoice argument.

g_processViews Once you have identified the hierarchy using the
t_switchUsing argument, as well as the switch list and
stop list if necessary, specify the views of the identified
cells to be processed:

• t
•

: Process all views that exist for the cell.
nil

• List of views to process.

: Process only the single view switched into.
(Default)

gS_processFiles Specifies whether cell- and library-level files are
processed in addition to the specified cell views:

• nil

•

: No cell- or library-level files are processed.
(Default)
cell

•

: Cell-level files are processed, but library-
level files are not. This option selects only cell-
level files for those cells on which you are
operating.
library

g_silent

: Cell- and library-level files are
processed.

Run silently (t). (Default)
g_background Run command in the background (t). By default,

DesignSync Data Manager DFII SKILL Programming Interface Guide

40

commands run in the foreground (nil). DesignSync DFII
adds background commands to the Background Queue.
Use the graphical interface command,
Synchronicity => Options => Show Background
Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output
of background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCheckoutLibraryP
dssCheckoutLibraryP(
 t_libName [?viewNames l_viewNames] [?mode t_mode]
 [?tag t_tag] [?force g_force] [?incremental g_incremental]
[?overlay g_overlay] [?retain g_retain]
[?unifyState g_unifyState][?silent g_silent]
[?background g_background] [?moduleContext t_moduleContext]
)
=> nil/(x_pass x_fail)

Description

Checks out a library, either all the objects in the library or a specified list of cell views.

Note:

By default, a library checkout only fetches the views corresponding to the cells currently
in the workspace. If you want to be sure to fetch the specified views for each cell in the
library and not just those in the workspace, enable the
syncFetchMissingCellsOnLibViewsCheckout SKILL variable. See the
DesignSync Data Manager DFII User's Guide: Fetching Views of Missing Cells During
Library Checkout for details.

Arguments

t_libName Library name. (Required)
l_viewNames One or more view name(s) to be checked out. (Optional).

Revision Control Functions

41

Checks out all views by default.
t_mode Check-out mode ("lock", "share", "mirror", "get", or

"lockref"). By default, the mode matches the default fetch
mode. See the DesignSync Data Manager DFII User's Guide:
Selecting a Default Fetch Mode to learn how to set the default
fetch mode.

Note: Because lockref mode should only be used when you
are regenerating data, it is not an appropriate mode for all
object types. For example, lockref is likely not appropriate
for library-level files such as prop.xx, cdsinfo.tag, and
category files.

t_tag Selector, or version name, to be checked out. By default, no
selector is specified, in which case the persistent selector list
determines the version -- typically the latest version on the
current branch. See DesignSync Data Manager User's Guide
to learn more about selectors.

Note: When used with modules, this identifies the module
version, not the module member version.

g_force Overwrite locally modified files in your workspace (t). By
default, local changes are not overwritten when you check out
files (nil).

g_incremental Perform incremental (t) or full (nil) populate. If not provided,
incremental behavior is determined by SyncAdmin setting (see
SyncAdmin Help).

g_overlay Fetch a version of a design object from another branch and
overlay it on the version you have checked out in your
workspace (t). By default, an overlay is not performed (nil).
 Note: This option is available only if t_mode is set to "get".

g_retain Retain the "last modified" timestamps of the checked-out
objects as recorded when the object was checked into the
vault (t), or make the timestamps the check-out time (nil).
The default is nil unless defined otherwise from SyncAdmin
(see SyncAdmin Help).

The retain option is only meaningful when checking out
physical copies (lock and get modes) and is silently ignored
otherwise.

g_unifyState Put objects in the state specified by t_mode even if the
workspace already contains the requested version and
therefore no checkout is required (t). By default (nil), a
check-out operation only changes the states of objects that are
fetched from the vault.

DesignSync Data Manager DFII SKILL Programming Interface Guide

42

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

t_moduleContext The module context to restrict the operation to. The module
must have its base directory at, or above, the level of the
library being checked out.

If you do not specify a module context, the operation applies to
all objects specified.

Note: You can only specify one module. If you are checking
out objects to two different modules in the same workspace,
use two separate checkout operations.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully checked out and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssCompareViewsP
dssCompareViewsP(
 d_cv1 d_cv2 [?fileName t_outFile] [?silent g_silent]) =>
x_diffs

Description

Given two cell view, reports the differences between the two views to the specified file
and optionally to the screen, and returns a count of the number of differences found.

Arguments

d_cv1 First View – a database reference as returned, for example, by
ddGetObj. (Required)

d_cv2 Second View – a database reference as returned, for example,

Revision Control Functions

43

by ddGetObj. (Required)
t_outFile Name of the output file in which to record the differences. If the

file already exists, then it is appended to by this operation. This
allows the results of multiple comparisons to be written to the
same file.

The file contents use the SKILL DPL (disembodied property
list.) format. The list begins with the value nil and has
alternating property names and values. The file is readable in
SKILL using the standard lineread functions. The differences
are contained in a sublist that uses a "reporting key" notation to
record the location and type of the differences and allow you to
locate them.

The properties in the list are:

• libName1: Library for first view
• cellName1: Cell for first view
• viewName1: View for first view
• libName2: Library for second view
• cellName2: Cell for second view
• viewName2: View for second view
• date: Date/time file was written (aka: command ran time)

in the standard Cadence getCurrentTime() format which
does not include the timezone.

• diffs: List of differences for each logical object type and
each LPP. The differences list appears in the following
order:

1. logical type (string, e.g. “inst”) or LPP (list of two
elements, name and purpose)
2. list of objects in first view only where each item is
identified by the reporting key for the item.
3. list of objects in second view onlywhere each item is
identified by the reporting key for the item.
4. list of objects in both views that have differences, where
each item is identified by the reporting key for the item and a
list of the text descriptions of the differences.

g_silent Run silently (t). (Default)

Note: If a value of nil is given, then a textual report of the
differences is written to the screen.

Value Returned

DesignSync Data Manager DFII SKILL Programming Interface Guide

44

x_diffs The number of differences reported.

Example

This example shows results of comparing two versions of the inv/layout view where
there is one difference in an “Instance” where a single property has changed.

dssCompareViewsP("layout" "layout_v1.2" ?fileName "diff")

"1"

Below is the resulting output file for the command.

Note: the file is written using a standard Cadence list-writing function which performs a
“pretty print” of the list which spreads it across multiple lines and performs standard
indentation..

(nil libName1 “master” cellName1 “inv”
viewName1 “layout” libName2 “master” cellName2
“inv” viewName2 “layout_v1.2” diffs (
 (“Instances” nil nil
 (((“basic” “pmos” “layout” 1.0 2.0) (“Property w changed
from 4.0 to 5.0”)))
)
)
)

Usage Tips

The ability to programmatically compare views and report differences can be used in a
variety of useful ways. A few sample usage scenarios are included below.

 Simple check for no changes

The API functions can be used to check whether two versions of a view are identical by
using the dssFetchCellViewVersionP() function to fetch the second version and
then calling dssCompareViewsP() and checking for a 0 return value.

Simplified check for instance additions and removals

The API function can be used to compare the views and only report additions/removals
by calling the dssCompareViewsP() function, and then reading in the results file
(using SKILL) and processing the list to only report instances that exist only in the first
view or only in the second view.

Check for differences across all views in a library with older release

Revision Control Functions

45

You can populate two different releases of a library to two different areas (by populating
both to different areas, and setting up the cds.lib file to use different library names.) and
write a routine that compares the views in the two libraries. For any view that is in both
libraries call dssCompareViewsP() to get a full description of all changes made in the
data between two releases.

Related Topics

dssCompareViewsHandlerP

dssGetViewVersionsP

dssCompareViewsHandlerP
dssCompareViewsHandlerP(t_objType ?name t_name ?keygenProc
s_keygen ?reportKeyProc s_reportKey ?compareProc s_compare
?diffProc ls_diff ?extractProc s_extract ?figsProc s_figsProc)

=> t

Description

The dssCompareViewsHandler allows users to extend and modify the system to their
own requirements. It allows customization of the way logical objects (instances, nets
etc) and physical shapes (lines, paths, labels etc) are found, compared and reported.
The keyed arguments are all optional, and if any keyed argument is not given then the
default is used.

The included dssCompareViewsP API performs a useful comparison of views by
default, and the dssCompareViewsHandlerP extension capability is only intended for
users with specialized needs.

Note: If registering a handler for a new logical type (for example, pins) you must register
a keygenProc, compareProc and extractProc otherwise the comparison will fail.

Arguments

t_objType String. For a shape, this is the Cadence defined objType of the
shape, for example “rect," “path,” or “label." For logical objects,
this may be any string, though it is recommended that it match
the Cadence objType where possible. If it is a logical object,
and you want to modify the default handlers it must be one of

DesignSync Data Manager DFII SKILL Programming Interface Guide

46

“inst," “net,” or “terminal.” (Required)

Note: See Cadence documentation for the full set of shape
types.

t_name String. The results display string for the type. This is for logical
items only. This is the name that appears in the drop-down
Results field on the GUI interface. This is optional and if not
specified for a new logical object will default to the objType
value. (Required)

s_keygen Symbol. The name of a procedure to generate the key for an
object. The procedure must take a single argument, d_object,
which is the object for which a key is required, and must return
a value (any type) that is the key for that object.

Note: The default key is the objects bounding box.
s_reportKey Symbol. The name of a procedure to generate the reporting key

for an object. The procedure takes three arguments: t_objType
(the object type), d_object (the object itself), and g_key (the key
for the object.) The procedure must return a single value (any
type) that is the reporting key for the object.

Note: When reporting an object that has changed, the object
passed to this routine is the object from the first cellview. The
default routine returns a list of the object type and the key
passed in. DesignSync recommends that this routine returns a
list that starts with the object type.

s_compare Symbol. The name of a procedure to compare two objects. The
procedure takes two arguments: d_obj1 (the object in the first
view) and d_obj2 (the object in the second view.) The
procedure must return nil if the objects are considered to have
no differences, otherwise it must return a list of strings detailing
the differences. The strings may be any length, but long strings
may not display well in the GUI results. The strings should NOT
contain newline characters. The default is a routine that
compares the user properties for the objects.

ls_diff Symbol or list. May be a list of two strings, that report objects
that are only in the first view or only in the second view.
Otherwise, may be a procedure that takes two arguments,
d_object and g_isFirst (true if the object is in the first view only,
nil if in the second view only), and must return a single string
that is used to report the objects present in only one view. The
default value is the string pair “Only in first view” and “Only in
second view”.

s_extract Symbol. The name of a procedure to extract all object of a type
from the cellview. The procedure takes two arguments: d_cv

Revision Control Functions

47

(one of the two views being compared), t_objType (the type of
objects to be returned.) The procedure returns a list of the
objects of the given type to be compared from the given view.
This procedure is required for non-Shape types.

s_figsProc Symbol. The name of a procedure to extract the figure(s)
associated with an object. The procedure takes a single
argument, d_object, and returns a list of the figures associated
with that object, or a single figure. This procedure is required
for non-Shape types to identify the figures that will be hilighted
when a difference in this object is identified.

Value Returned

Returns t if the handler has been created; otherwise, returns nil.

Example

This example compares the “instHeaders” of the view, rather than the instances
themselves, to see if any new types of sub-objects are being used. (instHeaders
encapsulate the set of instances of the same master cellview that are instantiated.)

If there are new types, all instances using the new type are hilited. This also reports the
lib/cell/view of the master cellview, and the number of instances that exist. There is no
compare routine used because if the instHeader is in both views it is considered
identical.

The registration function call is:

dssCompareViewsHandlerP(“instHeader” ?name “Master View”
?keygenProc ‘myKeyGen ?reportKeyProc ‘myReportKey ?compareProc
‘myCompareProc ?diffProc ‘myDiffProc ?extractProc ‘myExtractProc
?figsProc ‘myFigsProc)

The various functions used are:

procedure(myKeyGen(obj) list(obj~>libName obj~>cellName
obj~>viewName))

procedure(myReportKey(objType object key) sprintf(nil “%s:%s:%s”
object~>libName object~>cellName object~>viewName))

procedure(myCompareProc(obj1 obj2) nil)

procedure(myDiffProc(object isFirst) sprintf(nil “%d instances
only in %s cellview” length(object~>instances) if(isFirst
“first” “second”)))

DesignSync Data Manager DFII SKILL Programming Interface Guide

48

procedure(myExtractProc(cv objtype) cv~>instHeaders)

procedure(myFigsProc(object) object~>instances)

Notes:

• You can modify the default handlers used by the system or reuse the functions in those
handlers in your own extensions. The dssCompareViewsListHandlersP function
can be used to indentify the default handlers.

• The keygenProc identifies the master using lib, cell and view names.
• The reportKeyProc was not really needed as the procedure could use the key.
• The compareProc simple returns nil to indicate two instHeaders with the same key are

always considered to have no differences. A more complicated example could compare
the properties of the instHeaders.

• The diffProc reports the number of instances of the master that exist. Ideally, this might
want to allow for “variants” of the instHeader, for things like symbolic vias.

• The figsProc returns the list of instances of the instHeader. If you return instances in the
figures list to the compare program automatically hilights the figures associated with the
instances.

Related Topics

dssCompareViewsRemoveHandlerP

dssCompareViewsListHandlersP
dssCompareViewsListHandlersP()

Description

Shows a list of all the defined system and custom list handlers.

Arguments

None.

Return Value

Returns the defined list handlers in name/value pairs.

Related Topics

dssCompareViewsHandlerP

dssCompareViewsRemoveHandlerP

Revision Control Functions

49

dssCompareViewsRemoveHandlerP
dssCompareViewsRemoveHandlerP(t_objType) => t

Description

Removes a defined custom handler created with dssCompareViewsHandlerP.

Argument

t_objType String. This is the defined objType of the custom handler being
removed. (Required)

Value Returned

Returns t if the handler has been removed; otherwise, returns nil.

Example

This example removes a custom defined shape object called "rect,"

dssCompareViewsRemoveHandlerP("rect")

t

dssConfigureLibraryP
dssConfigureLibraryP(
 t_libName [?vaultPath t_vaultPath]
 [?localMirrorPath t_localMirrorPath]
 [?selector t_selector] [?silent g_silent]
)
=> t/nil

Description

Configures the library for use with DesignSync DFII by setting the vault (data repository)
and, optionally, the local mirror directory for the library.

Arguments

DesignSync Data Manager DFII SKILL Programming Interface Guide

50

t_libName Library name. (Required)

Note: You cannot specify a module-managed library.
t_vaultPath Vault URL for the data repository:

sync://<host>:<port>/Projects/<path>/<libraryNa
me> (for SyncServer vaults)

file:///<clientvaultpath> (for client vaults)

By default, the existing vault setting is used, if a vault has been
previously set.

t_localMirrorPat
h

Path of the local mirror directory, for example,
/home/karen/mirrors/ASIC. By default, the existing local
mirror directory is used, if previously set.

t_selector Selector specifying the branch of the library. For non-branching
environments, specify the Trunk selector. By default, the
selector is left unchanged.

g_silent Run silently (t). (Default)

Note: To unset the value of an argument, supply the empty string ("").

Value Returned

Returns t if the library has been configured successfully; otherwise, returns nil.

dssCreateCellViewP
dssCreateCellViewP(
 t_libName t_cellName t_viewName t_toolName
 [?force g_force] [?moduleContext t_moduleContext]
)
=> t/nil

Description

Creates a cell view in the workspace and reserves the name in the vault. You reserve
the name of the cell view at the time you create it to prevent other users from creating
the same view, which could lead to data merging problems.

Arguments

t_libName Library name. (Required)

Revision Control Functions

51

t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_toolName Design tool with which to create the cell view, for example

"Composer-Schematic". (Required). For a list of tool names,
Select Synchronicity => Create => Cell View from the CIW.
 The Tool Name drop-down list displays the valid strings you
specify as the t_ToolName argument.

g_force Force a new cell view to be created locally even if the cell view
already exists in the vault (t). By default, DesignSync DFII
does not force the cell view to be created (nil).

t_moduleContext The module context for the view being created. The module
must have its base directory at, or above, the level of the
object being created.

The new view is automatically added to the selected module.

Note: You can only specify one module.

Value Returned

Returns t if the cell view has been created; otherwise, returns nil.

dssDeleteCategoryP
dssDeleteCategoryP(
 t_libName tl_catNames [?stopOnError g_stopOnError]
 [?force g_force] [?vault g_vault] [?retire g_retire]
 [?remove g_remove] [?nested g_nested] [?silent g_silent]
 [?keepvid g_keepvid] [?background g_background]
)
=> t/nil

Description

Deletes objects of one or more categories from the workspace. You can also choose to
delete or retire the objects from the vault.

Arguments

t_libName Library name. (Required)

DesignSync Data Manager DFII SKILL Programming Interface Guide

52

tl_catNames One or more category names. (Required)
g_stopOnError Cancel the delete operation if a delete operation fails for one of

the objects (t).

By default, DesignSync DFII continues with delete operations
even if one of the delete operations fails (nil). The command
output details any errors that might have occurred during the
delete operations.

Note: This option cannot be used with remove operations.
g_force Force the objects to be deleted even if they are tagged or

locked (t). By default, you cannot delete an object that is
tagged or locked (nil).

g_vault Delete the objects from the vault (t). By default, the objects
are deleted only from your workspace (nil). Note: The
g_vault, g_retire, and g_remove arguments are all
mutually exclusive.

If g_vault is set to t and g_stopOnError is set to nil,
 DesignSync DFII continues to delete the workspace object
even if the vault object delete fails (for example, in the case
where an access control is set).

g_retire Retire the objects from the vault (t). By default, the objects
are deleted only from your workspace (nil). Note: The
g_vault, g_retire, and g_remove arguments are all
mutually exclusive.

If g_retire is set to t and g_stopOnError is set to nil,
 you might expect that DesignSync DFII will continue to delete
the object from your workspace even if the retire from vault
operation fails (for example, in the case where an access
control is set). However, in some cases, if the retire operation
fails, the object might remain in the workspace.

Note: This option is not applicable modules and module
members. If it is used on module or module members objects,
the command fails.

g_remove Removes the selected objects from the module (t). By default,
the objects are deleted only from your workspace (nil). Note:
The g_vault, g_retire, and g_remove arguments are all
mutually exclusive.

Note: This option is only applicable for module member
objects. If it is used on any other type of object, including a
module, the command fails.

Revision Control Functions

53

g_nested Apply to nested category contents (t). (Default)

Note: If g_nested is set to t but one or more nested category
files are missing from your workspace, DesignSync DFII
automatically fetches the missing category files and processes
the specified objects.

g_silent Run silently (t). (Default)
g_keepvid Retain information about the version ID of the Latest version in

the vault (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds
background commands to the Background Queue. Use the
graphical interface command, Synchronicity => Options =>
Show Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns t if the objects of the named categories have been successfully deleted;
otherwise, returns nil.

dssDeleteCellP
dssDeleteCellP(
 t_libName tl_cellNames [?stopOnError g_stopOnError]
 [?force g_force] [?vault g_vault] [?remove g_remove]
 [?retire g_retire] [?remove g_remove] [?silent g_silent]
[?keepvid g_keepvid] [?background g_background]
)
=> t/nil

Description

Deletes a cell and all its views from the workspace. You can also choose to delete or
retire the cell from the vault.

Arguments

t_libName Library name. (Required)
tl_cellNames One or more cell name(s) to be deleted. (Required)
g_stopOnError Cancel the delete operation if a delete operation fails for one of

DesignSync Data Manager DFII SKILL Programming Interface Guide

54

the objects (t). If you specify multiple cells, DesignSync DFII
processes the cells in the order you list them in the
tl_cellNames argument.

By default, DesignSync DFII continues with delete operations
even if one of the delete operations fails (nil). The command
output details any errors that might have occurred during the
delete operations.

Note: This option cannot be used with remove operations.
g_force Force the object or objects to be deleted even if they are

tagged or locked (t). By default, you cannot delete an object
that is tagged or locked (nil).

g_vault Delete the object or objects from the vault (t). By default,
objects are deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually
exclusive.

If g_vault is set to t and g_stopOnError is set to nil,
 DesignSync DFII continues to delete the workspace object
even if the vault object delete fails (for example, in the case
where an access control is set).

g_retire Retire the object or objects from the vault (t). By default,
objects are deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually
exclusive.

If g_retire is set to t and g_stopOnError is set to nil,
 you might expect that DesignSync DFII will continue to delete
the object from your workspace even if the retire from vault
operation fails (for example, in the case where an access
control is set). However, in some cases, if the retire operation
fails, the object might remain in the workspace.

g_remove Removes the selected objects from the module (t). By default,
the objects are deleted only from your workspace (nil). Note:
The g_vault, g_retire, and g_remove arguments are all mutually
exclusive.

Note: This option is only applicable for module member objects.
 If it is used on any other type of object, including a module, the
command fails.

g_silent Run silently (t). (Default)
g_keepvid Retain information about the version ID of the Latest version in

the vault (t). (Default)

Revision Control Functions

55

g_background Run command in the background (t). By default, commands
run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns t if the cell has been successfully deleted; otherwise, returns nil.

dssDeleteCellViewP
dssDeleteCellViewP(
 t_libName t_cellName t_viewName
 [?stopOnError g_stopOnError] [?force g_force]
 [?vault g_vault] [?retire g_retire] [?remove g_remove]
[?silent g_silent] [?keepvid g_keepvid]
[?background g_background]
)
=> t/nil

Description

Deletes a cell view from the workspace. You can also choose to delete or retire the cell
view from the vault.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
g_stopOnError Cancel the delete operation if part of the delete operation fails.

(t).

By default, DesignSync DFII continues with the delete
operation even if part of the delete operation fails (nil). For
example, if the ?vault option is set to t and DesignSync DFII
fails to delete the vault version of a cellview, you might still want
DesignSync DFII to continue and delete the workspace version

DesignSync Data Manager DFII SKILL Programming Interface Guide

56

of the cellview.

Note that if the ?retire option is set to t and DesignSync
DFII fails to retire the object, there are cases where the object
remains in the workspace.

The command output details any errors that might have
occurred during the delete operations.

Note: This option cannot be used with remove operations.
g_force Force the cell view to be deleted even if it is tagged or locked

(t). By default, you cannot delete an object that is tagged or
locked (nil).

g_vault Delete the cell view from the vault (t). By default, the cell view
is deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually
exclusive.

If g_vault is set to t and g_stopOnError is set to nil,
 DesignSync DFII continues to delete the workspace object
even if the vault object delete fails (for example, in the case
where an access control is set).

g_retire Retire the cell view from the vault (t). By default, the cell view
is deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually
exclusive.

If g_retire is set to t and g_stopOnError is set to nil,
 you might expect that DesignSync DFII will continue to delete
the object from your workspace even if the retire from vault
operation fails (for example, in the case where an access
control is set). However, in some cases, if the retire operation
fails, the object might remain in the workspace.

g_remove Removes the selected objects from the module (t). By default,
the objects are deleted only from your workspace (nil). Note:
The g_vault, g_retire, and g_remove arguments are all mutually
exclusive.

Note: This option is only applicable for module member objects.
 If it is used on any other type of object, including a module, the
command fails.

g_silent Run silently (t). (Default)
g_keepvid Retain information about the version ID of the Latest version in

the vault (t). (Default)

Revision Control Functions

57

g_background Run command in the background (t). By default, commands
run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns t if the cell view has been successfully deleted; otherwise, returns nil.

dssDeleteFileP
dssDeleteFileP(
 tl_objectNames [?stopOnError g_stopOnError]
 [?force g_force] [?vault g_vault]
 [?retire g_retire] [?remove g_remove]
[?remCdsLib g_remCdsLib] [?silent g_silent]
[?keepvid g_keepvid] [?background g_background]
)
=> t/nil

Description

Deletes one or more file objects or directories.

Note: You cannot use this function to delete a module.

You can specify absolute or relative filenames or directory names to be deleted.
Filenames and directory names can be relative to the current working directory or to any
library on the library path. For example, if library acc is on your library path, then you
can specify the cdsinfo.tag file for that library as acc/cdsinfo.tag, even though
the acc library directory might be anywhere on disk. If a library name exists, and there
is also a directory within the current working directory of the same name, the library
name is used.

Specify wildcards for filenames and directory names using glob-style expressions.

Note:

For wildcards, filenames and directory names in the current working directory take
precedence over library names. That is, a glob expression of lib* will not match

DesignSync Data Manager DFII SKILL Programming Interface Guide

58

libraries libA and libB if similarly named files or directories exist in the current
working directory; the dssDeleteFileP function first expands regular expressions
against the current directory, and then performs library matching.

Arguments

tl_objectNames One or more file object(s) to be deleted. (Required) You can
specify objects as glob-style expressions. An object can be:

A filename, specified as a full path or a path relative to the
current working directory.

A directory, specified as a full path or a path relative to the
current working directory.

A filename, specified relative to a library, for example
<libname>/cdsinfo.tag or
<libname>/cellname/prop.xx.

A library name.

A cell name, specified as <libname>/<cellname>.

A view name, specified as
<libname>/<cellname>/<viewname>.

Note: You cannot specify the type of view object that
DesignSync creates, for example:
~/ttlLib/and2/symbol.sync.cds as the filename. These
objects are not actual files; thus, you cannot apply the
dssDeleteFileP function to this type of object.

g_stopOnError Cancel the delete operation if a delete operation fails for one of
the objects (t).

By default, DesignSync DFII continues with delete operations
even if one of the delete operations fails (nil). The command
output details any errors that might have occurred during the
delete operations.

Note: This option cannot be used with remove operations.
g_force Force the object or objects to be deleted even if they are tagged

or locked (t). By default, you cannot delete an object that is
tagged or locked (nil).

g_vault Delete the object or objects from the vault (t). By default,

Revision Control Functions

59

objects are deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually exclusive.

If g_vault is set to t and g_stopOnError is set to nil,
 DesignSync DFII continues to delete the workspace object
even if the vault object delete fails (for example, in the case
where an access control is set).

g_retire Retire the object or objects from the vault (t). By default, objects
are deleted only from your workspace (nil). Note: The
g_vault and the g_retire arguments are mutually exclusive.

If g_retire is set to t and g_stopOnError is set to nil, you
might expect that DesignSync DFII will continue to delete the
object from your workspace even if the retire from vault
operation fails (for example, in the case where an access control
is set). However, in some cases, if the retire operation fails, the
object might remain in the workspace.

g_remove Removes the selected objects from the module (t). By default,
the objects are deleted only from your workspace (nil). Note:
The g_vault, g_retire, and g_remove arguments are all mutually
exclusive.

Note: This option is only applicable for module member objects.
 If it is used on any other type of object, including a module, the
command fails.

g_remCdsLib Remove the library's entry from the cds.lib file (t). (Default)
g_silent Run silently (t). (Default)
g_keepvid Retain information about the version ID of the Latest version in

the vault (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns t if the cell has been successfully deleted; otherwise, returns nil.

dssDeleteLibraryP

DesignSync Data Manager DFII SKILL Programming Interface Guide

60

dssDeleteLibraryP(
 t_libName [?stopOnError g_stopOnError]
 [?force g_force] [?vault g_vault]
 [?retire g_retire] [?remove g_remove]
[?remCdsLib g_remCdsLib] [?silent g_silent]
[?keepvid g_keepvid] [?background g_background]
)
=> t/nil

Description

Deletes a library from the workspace. You can also choose to delete or retire the library
from the vault.

Arguments

t_libName Library name. (Required)
g_stopOnError Cancel the delete operation if a delete operation fails for one of

the objects (t).

By default, DesignSync DFII continues with delete operations
even if one of the delete operations fails (nil). The command
output details any errors that might have occurred during the
delete operations.

Note: This option cannot be used with remove operations.
g_force Force objects in the library to be deleted even if they are

tagged or locked (t). By default, you cannot delete an object
that is tagged or locked (nil).

g_vault Delete the library from the vault (t). By default, the library is
deleted only from your workspace (nil). Note: The g_vault
and the g_retire arguments are mutually exclusive.

If g_vault is set to t and g_stopOnError is set to nil,
 DesignSync DFII continues to delete the workspace object
even if the vault object delete fails (for example, in the case
where an access control is set).

g_retire Retire the library from the vault (t). By default, the library is
deleted only from your workspace (nil). Note: The g_vault
and the g_retire arguments are mutually exclusive.

If g_retire is set to t and g_stopOnError is set to nil,
 you might expect that DesignSync DFII will continue to delete
the object from your workspace even if the retire from vault
operation fails (for example, in the case where an access

Revision Control Functions

61

control is set). However, in some cases, if the retire operation
fails, the object might remain in the workspace.

g_remove Removes the selected objects from the module (t). By default,
the objects are deleted only from your workspace (nil). Note:
The g_vault, g_retire, and g_remove arguments are all mutually
exclusive.

Note: This option is only applicable for module member objects.
 If it is used on any other type of object, including a module, the
command fails.

g_remCdsLib Remove the library's entry from the cds.lib file (t). (Default)
g_silent Run silently (t). (Default)
g_keepvid Retain information about the version ID of the Latest version in

the vault (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns t if the library has been successfully deleted; otherwise, returns nil.

dssDeleteTemporaryViewsP
dssDeleteTemporaryViewsP(
 t_libName [?silent g_silent]
)
=> t/nil

Description

Deletes any temporary cell views associated with the specified library. Temporary cell
views are created when you fetch a cell view version using the
dssFetchCellViewVersionP function.

Arguments

t_libName Library name. (Required)

DesignSync Data Manager DFII SKILL Programming Interface Guide

62

g_silent Run silently (t). (Default)

Value Returned

Returns t if the temporary cell views are deleted successfully; otherwise, returns nil.

dssDeleteVersionP
dssDeleteVersionP(
 t_libName t_cellName t_viewName tl_versionNames
 [?force g_force] [?silent g_silent]
)
=> t/nil

Description

Deletes one or more versions of an object from the vault.

Note: Module versions cannot be deleted.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
tl_versionNames One or more versions to be deleted. (Required)
g_force Force versions to be deleted even if they are tagged or locked

(t). By default, you cannot delete an object that is tagged or
locked (nil).

g_silent Run silently (t). (Default)

Value Returned

Returns t if the versions have been successfully deleted from the vault; otherwise,
returns nil.

dssFetchCellViewVersionP
dssFetchCellViewVersionP(
 t_libName t_cellName t_viewName t_versionName
 [?open g_open] [?silent g_silent] [?moduleVersion
g_moduleversion]

Revision Control Functions

63

)
=> t_versionName/nil

Description

Fetches a version of an object from the vault and creates a temporary view of the
object, without affecting the workspace version of the object. You can also choose to
open the temporary view of the version as part of the fetch operation. The function
fetches the version only if it is not already available in a temporary view.

This function lets you compare two or more versions of the same cell view. DesignSync
DFII creates a temporary, unmanaged copy of the specified version in your workspace.
The name of the temporary cell view version is <view>_v<version>, where <view>
is the name of the cell view, and <version> is the version number. For example,
opening version 1.3 of cell view layout creates a temporary cell view called
layout_v1.3.

To remove temporary views, use the dssDeleteTemporaryViewsP function.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_versionName Version to be fetched. (Required)
g_open Open the cell view version as part of the fetch operation (t). By

default, the version is not opened automatically (nil).
g_silent Run silently (t). (Default)
?moduleVersion t/nil boolean value indicating whether the command uses the

version as the module member vault version or the module
version. The default, nil, indicates that the version specified is
the module member vault version. This option is ignored for
non-module objects.

Value Returned

If the version is fetched successfully, dssFetchCellViewVersionP returns the
version number passed in or, if a selector is passed in, the version that corresponds to
the selector; otherwise, returns nil.

dssFetchLockedP
dssFetchLockedP(
 t_objName [?vault g_vault] [?silent g_silent]

DesignSync Data Manager DFII SKILL Programming Interface Guide

64

[?moduleContext t_moduleContext]
)
=>((l_object t_owner [t_branch t_time]) ...)/nil

Description

Reports the objects that are locked in the specified library or directory, returning a list of
locked objects and their owners. You can specify whether to check for a lock on the
objects in the local workspace or in the vault. For vault objects, the list includes the
object's branch and the time the object was locked.

Arguments

t_objName Library name, workspace module, or directory path.
 (Required)

g_vault Check whether the vault versions of the objects are locked (t),
and, for module members, what branch of the vault object is
locked. By default, the dssFetchLockedP function checks
whether the local workspace versions of the objects are locked
(nil).

g_silent Run silently (t). (Default)
t_moduleContext The module context to restrict the operation to. The module

must have its base directories at, or above, the level of the
library being queried.

If you do not specify a module context, the operation applies to
all objects specified.

Note: You can only specify one module with the
modulecontext option.

Value Returned

Returns a list of locked objects and information about their locks. Each object's lock
information is stored in a list that includes the object identifier sublist (l_object), the
lock owner (t_owner) and, if the object is a vault object, the object's branch
(t_branch) and lock time (t_time):

l_object If the object is a library, l_object returns a list of the form
(t_library t_cell_name t_cell_view t_file) The
filename can be nil, indicating that the object is a cell view.
The cell view can be nil, indicating a file at the cell level. Both
the cell name and cell view can be nil, indicating a file at the

Revision Control Functions

65

library level.

If the object is a directory, l_object returns a list of the form
(nil nil nil t_file)indicating a file rather than a library
object, where t_file is a filename relative to the specified
directory (l_object). Note that if the directory contains
libraries, dssFetchLockedP generates an entry for each
locked library object, as well.

t_owner The owner of the object.
t_branch The name of the object's branch selector.
t_time The date and time that the object was locked.

Returns nil if none of the objects in the library or directory are locked or if the library or
directory is not under revision control. The function raises an error if argument checking
fails. In all other failure cases, the function either raises an error or returns nil.

Example

The following examples show the return format of the dssFetchLockedP function. In
mylib, Ian has the cdsinfo.tag file and the mid2/schematic view locked in his
workspace. Fred has the mid2/symbol view locked. All locks are on branch 1 (Trunk):

dssFetchLockedP("mylib")
=>
(
 (("mylib" nil nil "cdsinfo.tag") "ian")
 (("mylib" "mid2" "schematic" nil) "ian")
)

dssFetchLockedP("mylib" ?vault t)
=>
(
(("mylib" nil nil "cdsinfo.tag") "ian" "1" "Fri Jul 06 16:42:51
BST 2001")
 (("mylib" "mid2" "schematic" nil) "ian" "1" "Mon Jul 09
08:45:28 BST 2001")
 (("mylib" "mid2" "symbol" nil) "fred" "1" "Thu Jul 05 13:21:05
BST 2001")
)

The following example shows the return format when a directory rather than a library is
specified. The directory contains the df2test library; thus, the dssFetchLockedP
function shows the locked objects in the df2test library, as well.

DesignSync Data Manager DFII SKILL Programming Interface Guide

66

dssFetchLockedP("~/work")
=>
(((nil nil nil "readme.txt") "karen")
 (("df2test" nil nil "readme.txt") "karen")
 (("df2test" nil nil "cdsinfo.tag") "karen")
 (("df2test" "mid1" "verilog" nil) "karen")
 (("df2test" "mid1" "symbol" nil) "karen")
 (("df2test" "mid1" "schematic" nil) "karen")
 (("df2test" "mid1" "layout" nil) "karen")
)

The following example shows the return format when a directory is specified and the
vault versions are queried.

dssFetchLockedP("~/work" ?vault t)
=>
(((nil nil nil "readme.txt") "karen" "1" "Thu Mar 28 13:02:30
EST 2002")
)

dssGetFileTagsP
dssGetFileTagsP(
 t_fileName
)
=> nil/l_tags

Description

Given a filename or workspace module name, returns a list of tags applied to the
workspace version of the object.

Module objects can be specified by full path. For other DesignSync objects, you can
specify an absolute or relative filename. Filenames can be relative to the current
working directory or to any library on the library path. For example, if library acc is on
your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A filename or workspace module name. (Required) A filename
can be absolute or relative to the current working directory or to
any library on the library path. Note: You must specify a

Revision Control Functions

67

filename; other file objects that resolve to directories, libraries,
cells, and views are not supported by the dssGetFileTagsP
function. Likewise, you cannot specify the type of view object
that DesignSync creates, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are not
actual files; thus, you cannot apply the dssGetFileTagsP
function to this type of object.

Value Returned

l_tags List of tags in reverse chronological order, with Latest, if
present, always first in the list.

The function raises an error if argument checking fails. In all other failure cases, the
function either raises an error or returns nil.

dssGetFileVersionP
dssGetFileVersionP(
 t_fileName [?useCache g_useCache] [?quick g_quick]
)
=> t_version

Description

Given a filename or workspace module name, returns the version of the object in the
workspace. By default, the dssGetFileVersionP function invokes the DesignSync
url versionid command to determine the version. To improve performance, you
can choose to access the cached or local metadata value of the object's version.

Module objects can be specified by full path. For other DesignSync objects, you can
specify an absolute or relative filename. Filenames can be relative to the current
working directory or to any library on the library path. For example, if library acc is on
your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A filename or workspace module name. (Required) A filename
can be absolute or relative to the current working directory or to
any library on the library path. Note: You must specify a

DesignSync Data Manager DFII SKILL Programming Interface Guide

68

filename; other file objects that resolve to directories, libraries,
cells, and views are not supported by the
dssGetFileVersionP function. Likewise, you cannot specify
the type of view object that DesignSync creates, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are not
actual files; thus, you cannot apply the dssGetFileVersionP
function to this type of object.

g_useCache Return the existing cached value if one exists for the object's
version (t). Extracting the cached value is the fastest method
of obtaining the version. By default (nil), the
dssGetViewVersionP function does not search for the
cached value. If g_useCache is 'nil' or the cached value is
not found, the following other methods for extracting the version
are attempted in this order:

• If g_quick is 't
• If both

', the local metadata value is returned.
g_useCache and g_quick are 'nil', the

DesignSync url versionid

Note that the cached value of the version is automatically
updated following any design management operation from the
Synchronicity menu or any Auto-Checkin or Auto-Checkout
operation.

 command is invoked.

g_quick Return the local metadata value for the object's version (t).
 Quick mode also returns a fetch state indicator; use quick
mode if you need to determine the fetch state as well as the
version number. For locked objects, quick mode cannot
provide the upcoming version; use the default to determine the
upcoming version of a locked object. Note: If g_useCache and
g_quick are both 't', the cached value is returned rather than
the local metadata value.

By default (nil), the dssGetViewVersionP function does not
search for the local metadata value. If g_quick is 'nil' or the
local metadata value is not found, the following other methods
for extracting the version are attempted in this order:

• If g_useCache is 't
• If both

', the cached value is returned.
g_useCache and g_quick are 'nil', the

DesignSync url versionid

Value Returned

 command is invoked.

Revision Control Functions

69

t_version The value returned depends upon the arguments selected:

Cached value used (useCache mode): Returns the cached
value for the object's version if one exists, for example, 1.3. If
no cached value is found, quick mode is attempted next, and if
the version cannot be obtained in quick mode, the DesignSync
url versionid command is invoked.

Local metadata value used (quick mode): Returns the version
number of the object followed by a fetch state indicator, for
example, 1.3 (S). Fetch state indicators include:

C: Cache mode

M: Mirror mode

L: Lock mode

No state indicator: Fetch mode

Note: In quick mode if a view is locked, only the current version
is reported and not the upcoming versions, for example '1.2
(L)' is returned rather than '1.2 -> 1.3'. Also in quick mode,
if the view is in mirror mode, then the value returned is always
‘Latest (M)’, rather than a specific version number.

url versionid command invoked: Returns the version number
of the object, for example, 1.3. If the object is locked, the
current version number and upcoming version number are
returned (1.3 -> 1.4)

dssGetFileVersionsP
dssGetFileVersionsP(
 t_fileName [?branchName t_branchName]
)
=> l_versions

Description

Given a filename or workspace module name, returns the list of versions that exist for
that object, either all versions or those versions on a specified branch.

DesignSync Data Manager DFII SKILL Programming Interface Guide

70

Module objects can be specified by full path. For other DesignSync objects, you can
specify an absolute or relative filename. Filenames can be relative to the current
working directory or to any library on the library path. For example, if library acc is on
your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A filename or workspace module name. (Required) A filename
can be absolute or relative to the current working directory or to
any library on the library path. Note: You must specify a
filename; other file objects that resolve to directories, libraries,
cells, and views are not supported by the
dssGetFileVersionsP function. Likewise, you cannot
specify the type of view object that DesignSync creates, for
example: ~/ttlLib/and2/symbol.sync.cds. These
objects are not actual files; thus, you cannot apply the
dssGetFileVersionsP function to this type of object.

t_branchName Branch name. Specify a branch selector, not a branch dot-
numeric version number. You can also specify one of the
following values for the t_branchName argument:

• all
•

: Returns all versions. (Default)
current

: Returns all versions on the branch of the file
currently in the workspace.

Value Returned

By default, the result is a list of all versions that exist in the vault for the specified object.
If a branch name is specified using the t_branchName argument, the return list is
restricted to the objects on that branch.

dssGetTagListP
dssGetTagListP(
 t_objName [?useCache g_useCache]
)
=> ((l_tags)/nil ((t_config t_tag) ...))/nil)

Description

Revision Control Functions

71

Given a library, workspace module, or directory name, returns the user-defined tags
and configuration tags for the object. User-defined tags can be defined in two places:
the syncUserTagList SKILL variable and the DesignSync DFII Options form.
Configuration tags are defined using ProjectSync. See the DesignSync Data Manager
DFII User's Guide:Creating a Tag List for details.

Arguments

t_objName Library, workspace module, or directory name. (Required)
g_useCache Use existing cached configuration information to generate the

configuration tags list (t, default). Using cached values is
faster but may not reflect up-to-date information. If
g_useCache is nil or cached information is not found, the
DesignSync url configs command is invoked, which
contacts the SyncServer for the latest configuration information.

Note that g_useCache has no effect on the user-defined tags
list; an up-to-date list is always returned.

Value Returned

Returns a two-element list. The first element is the list of user-defined tags, or nil if
there are no user-defined tags. The second element is a list of two-element lists, each
consisting of a configuration name and the corresponding vault tag, or nil if there are
no configurations.

l_tags Returns the list of user-defined tags from the registry and
syncUserTagList variable.

t_config Returns a configuration name.
t_tag Returns the vault tag associated with the configuration name.

The function raises an error if argument checking fails.

Example

The following examples show the return format of the dssGetTagListP function.

In this example, the library alib has no user-defined tags or configurations:

dssGetTagListP("alib")
=> (nil nil)

DesignSync Data Manager DFII SKILL Programming Interface Guide

72

In this example, the library blib has three user-defined tags (gold, silver, bronze) and
two configurations (Alpha, Beta). The cached configuration information is not accessed
in this example.

dssGetTagListP("blib" ?useCache nil)
=>
(("gold" "silver" "bronze")
 (("Alpha" "alpha_tag")
 ("Beta" "Beta")
)
)

dssGetViewPathP
dssGetViewPathP(
 t_libName t_cellName t_viewName
)
=> nil/t_path

Description

Given a cell view, returns the DesignSync workspace path for that view object.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)

Value Returned

t_path Returns the path to the view.sync.cds object.

The function raises an error if argument checking fails. In all other failure cases, the
function either raises an error or returns nil.

dssGetViewTagsP
dssGetViewTagsP(
 t_libName t_cellName t_viewName
)
=> nil/l_tags

Description

Revision Control Functions

73

Given a cell view, returns a list of tags applied to the workspace version of the view
object.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)

Value Returned

l_tags List of tags in reverse chronological order, with Latest, if
present, always first in the list.

The function raises an error if argument checking fails. In all other failure cases, the
function either raises an error or returns nil.

dssGetViewVersionP
dssGetViewVersionP(
 t_libName t_cellName t_viewName [?useCache g_useCache]
 [?quick g_quick] [?silent g_silent]
)
=> t_version

Description

Given a cell view, returns the version of the view object in the workspace. By default,
the dssGetViewVersionP function invokes the DesignSync url versionid
command to determine the version. To improve performance, you can choose to
access the cached or local metadata value of the object's version.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
g_useCache Return the existing cached value if one exists for the object's

version (t). Extracting the cached value is the fastest method
of obtaining the version. By default (nil), the
dssGetViewVersionP function does not search for the
cached value. If g_useCache is 'nil' or the cached value is
not found, the following other methods for extracting the version

DesignSync Data Manager DFII SKILL Programming Interface Guide

74

are attempted in this order:

• If g_quick is 't
• If both

', the local metadata value is returned.
g_useCache and g_quick are 'nil', the

DesignSync url versionid

Note that the cached value of the version is automatically
updated following any design management operation from the
Synchronicity menu or any Auto-Checkin or Auto-Checkout
operation.

 command is invoked.

g_quick Return the local metadata value for the object's version (t).
 Quick mode also returns a fetch state indicator; use quick
mode if you need to determine the fetch state as well as the
version number. For locked objects, quick mode cannot
provide the upcoming version; use the default to determine the
upcoming version of a locked object. Note: If g_useCache and
g_quick are both 't', the cached value is returned rather than
the local metadata value.

By default (nil), the dssGetViewVersionP function does not
search for the local metadata value. If g_quick is 'nil' or the
local metadata value is not found, the following other methods
for extracting the version are attempted in this order:

• If g_useCache is 't
• If both

', the cached value is returned.
g_useCache and g_quick are 'nil', the

DesignSync url versionid

g_silent

 command is invoked.

Run silently (t). (Default)

Value Returned

t_version The value returned depends upon the arguments selected:

Cached value used (useCache mode): Returns the cached
value for the object's version if one exists, for example, 1.3. If
no cached value is found, quick mode is attempted next, and if
the version cannot be obtained in quick mode, the DesignSync
url versionid command is invoked.

Local metadata value used (quick mode): Returns the version
number of the object followed by a fetch state indicator, for
example, 1.3 (S). Fetch state indicators include:

Revision Control Functions

75

C: Cache mode

M: Mirror mode

L: Lock mode

No state indicator: Fetch mode

Note: In quick mode if a view is locked, only the current version
is reported and not the upcoming versions, for example '1.2
(L)' is returned rather than '1.2 -> 1.3'.

url versionid command invoked: Returns the version number
of the object, for example, 1.3. If the object is locked, the
current version number and upcoming version number are
returned (1.3 -> 1.4)

Example

The following example returns the version number of the top schematic:

dssGetViewVersionP("df2test" "top" "schematic")
=>
"1.1"

You can use the dssGetViewVersionP function to annotate a symbol so that its label
contains the current version number of the associated schematic. To do so, you can
create a label on the symbol of type, iLLabel, with Label value of:

dssGetViewVersionP(ilInst~>master~>libName
ilInst~>master~>cellName "schematic" ?useCache t ?quick t
?silent t) || "Unknown"

This call to dssGetViewVersionP passes in the library and cell names of the master
of the symbol instance, as well as the schematic view name. The call requests the
cache value for the version number and the 'quick' method. The quick method is
important, as the ILLabel expression is evaluated each time the screen is refreshed,
so it needs to be as fast as possible. If there is no associated schematic view, the
Label value is set to "Unknown"; use of the ?silent option ensures that only
"Unknown" is returned as the Label value in this case.

dssGetViewVersionsP

DesignSync Data Manager DFII SKILL Programming Interface Guide

76

dssGetViewVersionsP(
 t_libName t_cellName t_viewName
 [?branchName t_branchName]
)
=> l_versions

Description

Given a cell view, returns the list of versions that exist for that cell view, either all
versions or those versions on a specified branch.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_branchName Branch name. Specify a branch selector, not a branch dot-

numeric version number. You can also specify one of the
following values for the t_branchName argument:

• all
•

: Returns all versions. (Default)
current

: Returns all versions on the branch of the
version that is currently in the workspace.

Value Returned

By default, the result is a list of all versions that exist in the vault for the specified view. If
a branch name is specified using the t_branchName argument, the return list is
restricted to the versions on that branch.

dssIsFileLockedP
dssIsFileLockedP(
 t_fileName [?vault g_vault]
)
=> t_user/nil

Description

Reports whether the specified file object is locked, returning the lock owner if the file
object is locked or nil if it is not locked. You can specify whether to check for a lock on
the object in the local workspace or in the vault.

Revision Control Functions

77

You can specify an absolute or relative filename. Filenames can be relative to the
current working directory or to any library on the library path. For example, if library acc
is on your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A filename. (Required) A filename can be absolute or relative to
the current working directory or to any library on the library
path. Note: You must specify a filename; other file objects that
resolve to directories, libraries, cells, and views are not
supported by the dssIsFileLockedP function. Likewise, you
cannot specify the type of view object that DesignSync creates,
for example: ~/ttlLib/and2/symbol.sync.cds. These
objects are not actual files; thus, you cannot apply the
dssIsFileLockedP function to this type of object.

g_vault Check whether the vault version of the file is locked (t), and,
for module members, what branch of the vault object is locked.
 By default, the dssIsFileLockedP function checks whether
the local workspace version of the file is locked (nil). Note: If
you are checking for a lock on the vault version, only the
current branch of the object is checked.

Value Returned

Returns the lock owner if the object is locked. Note: If you are checking for a lock in the
local workspace, the lock owner returned is the owner of the object. The function raises
an error if argument checking fails. In all other failure cases, the function either raises
an error or returns nil.

dssIsViewLockedP
dssIsViewLockedP(
 t_libName t_cellName t_viewName [?vault g_vault]
)
=> t_user/nil

Description

Reports whether the specified cell view is locked, returning the lock owner if the cell
view is locked or nil if the cell view is not locked. You can specify whether to check for
a lock on the object in the local workspace or in the vault.

DesignSync Data Manager DFII SKILL Programming Interface Guide

78

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
g_vault Check whether the vault version of the cell view is locked (t),

and, for module members, what branch of the vault object is
locked. By default, the dssIsViewLockedP function checks
whether the local workspace version of the cell view is locked
(nil). Note: If you are checking for a lock on the vault version,
only the current branch of the object is checked.

Value Returned

Returns the lock owner if the object is locked. Note: If you are checking for a lock in the
local workspace, the lock owner returned is the owner of the object. The function raises
an error if argument checking fails. In all other failure cases, the function either raises
an error or returns nil.

dssJoinLibraryP
dssJoinLibraryP(
 t_vaultPath [?libName t_libName] [?libPath t_libPath]
 [?mirrorPath t_mirrorPath] [?mode t_mode]
 [?selector t_selector] [?recursive g_recursive]
 [?retain g_retain] [?silent g_silent]
 [?background g_background]
)
=> t/nil

Description

Accesses the specified library and sets up an associated workspace.

Arguments

t_vaultPath Vault URL for the data repository:

sync://<host>:<port>/Projects/<path>/<libraryName>
(for SyncServer vaults)

file:///<clientvaultpath> (for client vaults)

Revision Control Functions

79

(Required)

Note: You cannot specify a module vault URL or a workspace path
to a module.

t_libName Library name. By default, the library name is the last element of the
vault path in the t_vaultPath argument.

t_libPath Local path to the library, including the library name. The library path
defaults to <syncJoinLibDefaultPath>/<lib_name>, where
<lib_name> is the library name as specified in the t_vaultPath
or t_libName argument. The default value for
<syncJoinLibDefaultPath> is "." where "." is the DFII current
working directory.

t_mirrorPath Path of the local mirror directory, for example,
/home/karen/mirrors/ASIC. By default, no mirror is set.

t_mode Check-out mode ("lock", "share", "mirror", or "get"). By
default, the mode matches the default fetch mode. See the
DesignSync Data Manager DFII User's Guide:Selecting a Default
Fetch Mode to learn how to set the default fetch mode.

t_selector Selector specifying the branch of the library you want to access.
 For non-branching environments, specify the Trunk selector. By
default, the selector of the parent directory of t_libPath is used.

g_recursive Recurse to fetch entire library (t). (Default). To fetch just the library-
level files, set to nil.

g_retain Retain the "last modified" timestamps of the checked-out objects as
recorded when the object was checked into the vault (t), or make
the timestamps the check-out time (nil). The default is nil unless
defined otherwise from SyncAdmin (see SyncAdmin Help).

The retain option is only meaningful when checking out physical
copies (lock and get modes) and is silently ignored otherwise.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands run in

the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical interface
command, Synchronicity => Options => Show Background
Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

DesignSync Data Manager DFII SKILL Programming Interface Guide

80

Returns t if the workspace associated with the specified library has been set up
successfully; otherwise, returns nil.

dssLibraryStatusP
dssLibraryStatusP(
 t_libName [?silent g_silent]
)
=> l_status

Description

Reports library status, such as the workspace path. If the library is managed by
DesignSync DFII, reports the vault path, module, selector, cache, and mirror information
associated with the library, as well as SyncServer availability.

Arguments

t_libName Library name. (Required)
g_silent Run silently (t). (Default) To generate a descriptive status

output similar to the Library Status form, set to nil.

Value Returned

Returns a disembodied property list of status information for the specified library.

l_status Returns a list of the form (nil
name t_name
modulePath t_modulePath
libName t_libName
libPath t_libPath
dmType t_dmType
vaultPath t_vaultPath
cachePath t_cachePath
selector t_selector
localMirrorPath t_localMirrorPath
vaultMirrorPath t_vaultMirrorPath
serverStatus t_serverStatus)

If a value is unavailable for any reason, the value is nil.
t_name The name of the module.
t_modulepath The workspace instance of the module.
t_libName The name of the library.
t_libPath The path to the library's local workspace.

Revision Control Functions

81

t_dmType

The design management tool associated with the library as
defined by the Cadence DMTYPE variable. The value is
"sync" if the library is managed by DesignSync DFII.

t_vaultPath The vault folder associated with the managed library, or nil
if the library is unmanaged.

t_cachePath Path of the cache directory, as specified when DesignSync
DFII was installed or from SyncAdmin.

t_selector Selector specifying the branch or version of the library.
t_localMirrorPath Path of the local mirror directory.
t_vaultMirrorPath This legacy property's value, which pertains to old

"setvaultmirror" functionality, is always "nil".
t_serverStatus Status of the SyncServer on which the library's vault

resides. The value is "up" if the server is available or the
vault is a client vault, and "down" if it is unavailable.

The function raises an error if argument checking fails.

Example

The following example shows the return format of the dssLibraryStatusP function.

dssLibraryStatusP("df2test")
=>
(nil
 localMirrorPath
"file:///home/tbarbg10/Mirrors/Libraries/df2test"
 vaultMirrorPath nil
 cachePath "/home/tbarbg10/Caches/Libraries/df2test"
 serverStatus "up"
 selector "Trunk"
 vaultPath "sync://qewfsun9:30138/Libs/df2test"
 dmType "sync"
 libPath "/home/tbarbg4/Cadence/df2test"

The following example shows the output returned by the dssLibraryStatusP
function with the ?silent option set to nil.

libName "df2test"
)

dssLibraryStatusP("df2test" ?silent nil)
=>
 Library: df2test
 Path: /home/tbarbg4/Cadence/df2test
 DM Type: sync
 Vault: sync://qewfsun9:30138/Libs/df2test

DesignSync Data Manager DFII SKILL Programming Interface Guide

82

 Cache Directory: /home/tbarbg10/Caches/Libraries/df2test
 Selector: Trunk
 Mirror: file:///home/tbarbg10/Mirrors/Libraries/df2test
 Server: Accessible
 (nil localMirrorPath
"file:///home/tbarbg10/Mirrors/Libraries/df2test"
vaultMirrorPath nil cachePath
"/home/tbarbg10/Caches/Libraries/df2test"
serverStatus "up" selector "Trunk" vaultPath
"sync://qewfsun9:30138/Libs/df2test" dmType "sync" libPath
"/home/tbarbg4/Cadence/df2test" libName "df2test"

dssListHierarchyP

)

dssListHierarchyP(
 t_libName t_cellName tl_viewNames
 [?switchUsing t_switchUsing]
 [?switchList l_switchList]
 [?stopList l_stopList]
 [?switchLibChoice S_switchLibChoice]
 [?switchLibNames l_switchLibNames]
 [?processViews gl_processViews]
 [?processFiles gS_processFiles] [?silent g_silent]
)
=> l_result

Description

Lists the objects of a design hierarchy in the workspace. To identify the cells in a design
hierarchy, DesignSync DFII scans the hierarchy, beginning with the top-level cell views
you specify using the tl_viewNames argument. Then, DesignSync DFII descends into
the views indicated by the t_switchUsing argument. You can use the
t_switchUsing argument to specify that DesignSync DFII descend into one or more
views you specify in a switch list (using the l_switchList argument). You can
instead have DesignSync DFII descend into all instantiated views or all views that exist
for a cell by setting the t_switchUsing argument to "instantiatedView" or
"allViews", respectively. Use the l_stopList argument to indicate at which views
DesignSync DFII is to stop scanning. DesignSync DFII also offers other hierarchy
controls, such as limiting which libraries are scanned using the S_switchLibChoice
argument and limiting which views are checked in using the g_processViews
argument.

Notes:

Revision Control Functions

83

• For DesignSync DFII to scan the hierarchy, the cells must be in your local
workspace.

• DesignSync DFII does not scan through libraries that have been filtered out using
the l_switchLibNames argument. For example, suppose a cell in library_1
references a cell in library_2, which references a cell in library_3. If library_2 is
filtered out in the l_switchLibNames

Arguments

 argument, the cell in library_3 is not
found.

t_libName Top library name of hierarchy to be listed. (Required)
t_cellName Top cell name of hierarchy to be listed. (Required)
tl_viewNames Top-level view names of hierarchies to be checked out.

(Required)
Can be given a single view, a string, or a list of views.

t_switchUsing Indicates how the design hierarchy is to be traversed.
Specify one of the following:

• "firstSwitchList": As the design is traversed,
DesignSync DFII descends into the first view
specified in the switch list that exists for a cell.
Specify the switch list using the l_switchList

•

argument. (Default)
"allSwitchList": As the design is traversed,
DesignSync DFII descends into each view of the cell
in the workspace that matches a view in the switch
list. Specify the switch list using the l_switchList

•

argument.
"instantiatedView": As the design is traversed,
DesignSync DFII descends into each instantiated
view. The l_switchList

•

 argument is ignored in
this case.
"allViews": As the design is traversed,
DesignSync DFII descends into each view of the cell
in the workspace that exists for each cell. The
l_switchList

l_switchList

 argument is ignored in this case.

Names of the views to be scanned to identify the design
hierarchy. The l_switchList argument is required if you
specify the "firstSwitchList" or "allSwitchList"
values using the t_switchUsing argument. If the
t_switchUsing argument is set to "instantiatedView"
or "allViews", this argument is ignored.

l_stopList Names of views at which the hierarchy scanning should

DesignSync Data Manager DFII SKILL Programming Interface Guide

84

stop. As the design is traversed, if the l_switchList view
being scanned is also in this list, scanning stops.

S_switchLibChoice Specifies which libraries to enter as the hierarchy is
scanned:

• all
•

: Enter all libraries. (Default)
only: Enter only the libraries specified by the
l_switchLibNames

•
 argument.

not: Enter all libraries except those specified by the
l_switchLibNames

l_switchLibNames

 argument.

Library names controlled by the S_switchLibChoice
argument. You need not include this argument if all is
selected as the S_switchLibChoice argument.

g_processViews Once you have identified the hierarchy using the
t_switchUsing argument, as well as the switch list and
stop list if necessary, specify the views of the identified cells
to be processed:

• t
•

: Process all views that exist for the cell.
nil

• List of views to process.

: Process only the single view switched into.
(Default)

gS_processFiles Specifies whether cell- and library-level files are processed
in addition to the specified cell views:

• nil

•

: No cell- or library-level files are processed.
(Default)
cell

•

: Cell-level files are processed, but library-level
files are not. This option selects only cell-level files for
those cells on which you are operating.
library

g_silent

: Cell- and library-level files are processed.

Run silently and provide no warning if no objects match (t).
 (Default). If you set g_silent to nil, warning messages
are provided if no objects match.

Value Returned

Returns the list of objects in the specified design hierarchy. Each entry in the return list
is a list containing an object's library name, its cell name, its cell view name, and its
filename. The filename can be nil, indicating that the object is a cell view. The cell

Revision Control Functions

85

view can be nil, indicating a file at the cell level. Both the cell and cell view can be
nil, indicating a file at the library level.

dssTagCategoryP
dssTagCategoryP(
 t_libName tl_catNames t_tag [?viewNames l_viewNames]
 [?move g_move] [?remove g_remove] [?nested g_nested]
 [?modified g_modified] [?silent g_silent]
 [?background g_background]

Description

)
=> nil/(x_pass x_fail)

Tags (or removes a tag from) objects of one or more categories. You can tag all the
objects of a category at one time or specify views to tag.

Arguments

t_libName Library name. (Required)
tl_catNames One or more category names. (Required)
t_tag Tag to apply to the workspace versions of the objects of the

specified category. See DesignSync DFII Help for tag naming
guidelines. (Required)

l_viewNames One or more view name(s) to be tagged. (Optional). Tags all
views in the workspace by default.

g_move Move a tag that is already used on a version of an object to a
new version (t). By default (nil), a tag operation fails if the tag
is already in use, because a tag can be attached to only one
version or branch of an object at a time. Note: The g_move and
g_remove arguments are mutually exclusive.

g_remove Delete the t_tag selector from the specified objects (t). By
default (nil), the t_tag selector is added to the specified
versions. Note: The g_move and g_remove arguments are
mutually exclusive.

g_nested Apply to nested category contents (t). (Default)

Note: If g_nested is set to t but one or more nested category
files are missing from your workspace, DesignSync DFII
automatically fetches the missing category files and processes
the specified objects.

g_modified For locally modified objects, tag originally checked-out version
(t) instead of failing (nil, default). Tagging is a vault operation,

DesignSync Data Manager DFII SKILL Programming Interface Guide

86

so locally modified objects are themselves never tagged. Note:
The g_remove and g_modified arguments are mutually
exclusive.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssTagCellP
dssTagCellP(
 t_libName tl_cellNames t_tag [?viewNames l_viewNames]
 [?move g_move] [?remove g_remove] [?silent g_silent]
 [?modified g_modified] [?background g_background]

Description

)
=> nil/(x_pass x_fail)

Tags (or removes a tag from) a cell in the workspace. To tag an entire design hierarchy,
use the dssTagHierarchyP function.

Arguments

t_libName Library name of cell to be tagged. (Required)
tl_cellNames Names of one or more cells to be tagged. (Required)
t_tag Tag to apply to the workspace versions of the objects. See the

DesignSync Data Manager DFII User's Guide for tag naming
guidelines. (Required)

l_viewNames One or more view name(s) to be tagged. (Optional). Tags all
views in the workspace by default.

Revision Control Functions

87

g_move Move a tag that is already used on a version of an object to a
new version (t). By default (nil), a tag operation fails if the tag
is already in use, because a tag can be attached to only one
version or branch of an object at a time. Note: The g_move and
g_remove arguments are mutually exclusive.

g_remove Delete the t_tag selector from the specified objects (t). By
default (nil), the t_tag selector is added to the specified
versions. Note: The g_move and g_remove arguments are
mutually exclusive.

g_modified For locally modified objects, tag originally checked-out version
(t) instead of failing (nil, default). Tagging is a vault operation,
so locally modified objects are themselves never tagged. Note:
The g_remove and g_modified arguments are mutually
exclusive.

g_background Run silently (t). (Default)
g_silent Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssTagCellViewP
dssTagCellViewP(
 t_libName t_cellName t_viewName t_tag
 [?versionName t_versionName] [?move g_move]
 [?remove g_remove] [?silent g_silent]
 [?modified g_modified] [?background g_background]

Description

)
=> nil/(x_pass x_fail)

DesignSync Data Manager DFII SKILL Programming Interface Guide

88

Tags (or removes a tag from) a cell view in the workspace. To tag an entire design
hierarchy, use the dssTagHierarchyP function.

Arguments

t_libName Library name of cell view to be tagged. (Required)
t_cellName Cell name of cell view to be tagged. (Required)
t_viewName Cell view name to be tagged. (Required)
t_tag Tag to apply to the workspace version of the object. See the

DesignSync Data Manager DFII User's Guide for tag naming
guidelines. (Required)

t_versionName Version to be tagged. By default, the version is the current
version in the workspace.

g_move Move a tag that is already used on a version of an object to a
new version (t). By default (nil), a tag operation fails if the tag
is already in use, because a tag can be attached to only one
version or branch of an object at a time. Note: The g_move and
g_remove arguments are mutually exclusive.

g_remove Delete the t_tag selector from the specified objects (t). By
default (nil), the t_tag selector is added to the specified
versions. Note: The g_move and g_remove arguments are
mutually exclusive.

g_modified For locally modified objects, tag originally checked-out version
(t) instead of failing (nil, default). Tagging is a vault operation,
so locally modified objects are themselves never tagged. Note:
The g_remove and g_modified arguments are mutually
exclusive.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
dssTagCellViewP function lets you tag a single cell view only, so the returned list is
(1 0) if the tag operation is successful and (0 1) if the tag operation fails. The function

Revision Control Functions

89

raises an error if argument checking fails. In all other failure cases, the function either
raises an error or returns nil.

dssTagFileP
dssTagFileP(
 tl_fileNames t_tag [?move g_move] [?remove g_remove]
 [?modified g_modified] [?silent g_silent]
 [?background g_background]

Description

)
=> nil/(x_pass x_fail)

Tags (or removes a tag from) one or more file object(s) in the local workspace.

You can specify absolute or relative filenames. Filenames can be relative to the current
working directory or to any library on the library path. For example, if library acc is on
your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Specify wildcards for filenames using glob-style expressions.

Notes:

For wildcards, filenames in the current working directory take precedence over library
names. That is, a glob expression of lib* will not match libraries libA and libB if
similarly named files exist in the current working directory; the dssTagFileP function
first expands regular expressions against the current directory, and then performs
library matching.

Arguments

tl_fileNames One or more file object(s) to be tagged. (Required) You can
specify file objects as glob-style expressions. A file object can
be:

A filename, specified as a full path or a path relative to the
current working directory.

A filename, specified relative to a library, for example
<libname>/cdsinfo.tag or

DesignSync Data Manager DFII SKILL Programming Interface Guide

90

<libname>/cellname/prop.xx.

A directory name, either a full path or a path relative to the
current working directory.

A library name.

A cell name, specified as <libname>/<cellname>.

A view name, specified as
<libname>/<cellname>/<viewname>.

Note: DesignSync creates objects called <name>.sync.cds to
represent Cadence views, where <name> corresponds to the
name of the view folder, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are not
actual files; thus, you cannot apply the dssTagFileP function
to this type of object.

t_tag Tag to apply to the workspace versions of the objects. See the
DesignSync Data Manager DFII User's Guide for tag naming
guidelines. (Required)

g_move Move a tag that is already used on a version of an object to a
new version (t). By default (nil), a tag operation fails if the tag
is already in use, because a tag can be attached to only one
version or branch of an object at a time. Note: The g_move and
g_remove arguments are mutually exclusive.

g_remove Delete the t_tag selector from the specified objects (t). By
default (nil), the t_tag selector is added to the specified
versions. Note: The g_move and g_remove arguments are
mutually exclusive.

g_modified For locally modified objects, tag originally checked-out version
(t) instead of failing (nil, default). Tagging is a vault operation,
so locally modified objects are themselves never tagged. Note:
The g_remove and g_modified arguments are mutually
exclusive.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of

Revision Control Functions

91

background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssTagHierarchyP
dssTagHierarchyP(
 t_libName t_cellName tl_viewNames
 t_tag [?switchUsing t_switchUsing]
 [?switchList l_switchList] [?move g_move]
 [?remove g_remove] [?stopList l_stopList]
 [?switchLibChoice S_switchLibChoice]
 [?switchLibNames l_switchLibNames]
 [?processViews gl_processViews]
 [?processFiles gS_processFiles]
 [?modified g_modified] [?silent g_silent]
 [?background g_background]

Description

)
=> nil/(x_pass x_fail)

Tags (or removes a tag from) a design hierarchy in the workspace. To identify the cells
in a design hierarchy, DesignSync DFII scans the hierarchy, beginning with the top-level
cell views you specify using the tl_viewNames argument. Then, DesignSync DFII
descends into the views indicated by the t_switchUsing argument. You can use the
t_switchUsing argument to specify that DesignSync DFII descend into one or more
views you specify in a switch list (using the l_switchList argument). You can
instead have DesignSync DFII descend into all instantiated views or all views that exist
for a cell by setting the t_switchUsing argument to "instantiatedView" or
"allViews", respectively. Use the l_stopList argument to indicate at which views
DesignSync DFII is to stop scanning. DesignSync DFII also offers other hierarchy
controls, such as limiting which libraries are scanned using the S_switchLibChoice
argument and limiting which views are checked in using the g_processViews
argument.

Notes:

• For DesignSync DFII to scan the hierarchy, the cells must be in your local
workspace.

DesignSync Data Manager DFII SKILL Programming Interface Guide

92

• DesignSync DFII does not scan through libraries that have been filtered out using
the l_switchLibNames argument. For example, suppose a cell in library_1
references a cell in library_2, which references a cell in library_3. If library_2 is
filtered out in the l_switchLibNames

Arguments

 argument, the cell in library_3 is not
found.

t_libName Top library name of hierarchy to be tagged. (Required)
t_cellName Top cell name of hierarchy to be tagged. (Required)
tl_viewNames Top-level view names of hierarchies to be checked out.

(Required)
Can be given a single view, a string, or a list of views.

t_tag Tag to apply to workspace versions of the design hierarchy.
 See the DesignSync Data Manager DFII User's Guide for
tag naming guidelines. (Required)

t_switchUsing Indicates how the design hierarchy is to be traversed.
Specify one of the following:

• "firstSwitchList": As the design is traversed,
DesignSync DFII descends into the first view
specified in the switch list that exists for a cell.
Specify the switch list using the l_switchList

•

argument. (Default)
"allSwitchList": As the design is traversed,
DesignSync DFII descends into each view of the cell
in the workspace that matches a view in the switch
list. Specify the switch list using the l_switchList

•

argument.
"instantiatedView": As the design is traversed,
DesignSync DFII descends into each instantiated
view. The l_switchList

•

 argument is ignored in
this case.
"allViews": As the design is traversed,
DesignSync DFII descends into each view of the cell
in the workspace that exists for each cell. The
l_switchList

l_switchList

 argument is ignored in this case.

Names of the views to be scanned to identify the design
hierarchy. The l_switchList argument is required if you
specify the "firstSwitchList" or "allSwitchList"
values using the t_switchUsing argument. If the
t_switchUsing argument is set to "instantiatedView"
or "allViews", this argument is ignored.

Revision Control Functions

93

g_move Move a tag that is already used on a version of an object to
a new version (t). By default (nil), a tag operation fails if
the tag is already in use, because a tag can be attached to
only one version or branch of an object at a time. Note: The
g_move and g_remove arguments are mutually exclusive.

g_remove Delete the t_tag selector from the specified objects (t). By
default (nil), the t_tag selector is added to the specified
versions. Note: The g_move and g_remove arguments are
mutually exclusive.

l_stopList Names of views at which the hierarchy scanning should
stop. As the design is traversed, if the l_switchList view
being scanned is also in this list, scanning stops.

S_switchLibChoice Specifies which libraries to enter as the hierarchy is
scanned:

• all
•

: Enter all libraries. (Default)
only: Enter only the libraries specified by the
l_switchLibNames

•
 argument.

not: Enter all libraries except those specified by the
l_switchLibNames

l_switchLibNames

 argument.

Library names controlled by the S_switchLibChoice
argument. You need not include this argument if all is
selected as the S_switchLibChoice argument.

g_processViews Once you have identified the hierarchy using the
t_switchUsing argument, as well as the switch list and
stop list if necessary, specify the views of the identified cells
to be processed:

• t
•

: Process all views that exist for the cell.
nil

• List of views to process.

: Process only the single view switched into.
(Default)

gS_processFiles Specifies whether cell- and library-level files are processed
in addition to the specified cell views:

• nil

•

: No cell- or library-level files are processed.
(Default)
cell

•

: Cell-level files are processed, but library-level
files are not. This option selects only cell-level files for
those cells on which you are operating.
library: Cell- and library-level files are processed.

DesignSync Data Manager DFII SKILL Programming Interface Guide

94

g_modified For locally modified objects, tag originally checked-out
version (t) instead of failing (nil, default). Tagging is a
vault operation, so locally modified objects are themselves
never tagged. Note: The g_remove and g_modified
arguments are mutually exclusive.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default,

commands run in the foreground (nil). DesignSync DFII
adds background commands to the Background Queue.
Use the graphical interface command,
Synchronicity => Options => Show Background Queue
to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssTagLibraryP
dssTagLibraryP(
 t_libName t_tag [?viewNames l_viewNames]
 [?move g_move] [?remove g_remove]
 [?modified g_modified][?silent g_silent]
 [?background g_background]

Description

)
=> nil/(x_pass x_fail)

Tags (or removes a tag from) a library in the workspace.

Arguments

t_libName Name of library to be tagged. (Required)
t_tag Tag to apply to the workspace versions of the objects. See the

DesignSync Data Manager DFII User's Guide for tag naming
guidelines. (Required)

Revision Control Functions

95

l_viewNames One or more view name(s) to be tagged. (Optional). Tags all
views in the workspace by default.

g_move Move a tag that is already used on a version of an object to a
new version (t). By default (nil), a tag operation fails if the tag
is already in use, because a tag can be attached to only one
version or branch of an object at a time. Note: The g_move and
g_remove arguments are mutually exclusive.

g_remove Delete the t_tag selector from the specified objects (t). By
default (nil), the t_tag selector is added to the specified
versions. Note: The g_move and g_remove arguments are
mutually exclusive.
For locally modified objects, tag originally checked-out version
(t) instead of failing (nil, default). Tagging is a vault operation,
so locally modified objects are themselves never tagged. Note:
The g_remove and g_modified arguments are mutually
exclusive.

g_modified

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of objects
successfully tagged and the second integer represents the number of failures. The
function raises an error if argument checking fails. In all other failure cases, the function
either raises an error or returns nil.

dssUnlockCellViewP
dssUnlockCellViewP(
 t_libName t_cellName t_viewName [?branch t_branch]
 [?silent g_silent] [?background g_background]
)
=> nil/(x_pass x_fail)

Description

DesignSync Data Manager DFII SKILL Programming Interface Guide

96

Unlocks a single cell view. Use dssCancelCellViewP to remove the lock on a cell
view that you have checked out in your workspace.

Arguments

t_libName Library name. (Required)
t_cellName Cell name. (Required)
t_viewName View name. (Required)
t_branch Branch name. By default, dssUnlockCellViewP unlocks the

current branch of the cell view in your workspace. If the cell view
is not in your workspace, then by default the library's selector is
used.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of
successful unlocks and the second integer represents the number of failures. The
dssUnlockCellViewP function lets you unlock a single cell view, so the returned list
is (1 0) if the unlock is successful and (0 1) if the unlock fails. The function raises an
error if argument checking fails. In all other failure cases, the function either raises an
error or returns nil.

dssUnlockFileP
dssUnlockFileP(
 t_fileName [?branch t_branch] [?silent g_silent]
 [?background g_background]
)
=> nil/(x_pass x_fail)

Description

Unlocks a single file. Use dssCancelFileP to remove the lock on a file or module that
you have checked out in your workspace.

Revision Control Functions

97

You can specify an absolute or relative filename. Filenames can be relative to the
current working directory or to any library on the library path. For example, if library acc
is on your library path, then you can specify the cdsinfo.tag file for that library as
acc/cdsinfo.tag, even though the acc library directory might be anywhere on disk.
If a library name exists, and there is also a directory within the current working directory
of the same name, the library name is used.

Arguments

t_fileName A file or module name. (Required) A filename can be absolute
or relative to the current working directory or to any library on the
library path.

Note: You must specify a filename; other file objects that resolve
to directories, libraries, cells, and views are not supported by the
dssUnlockFileP function. Likewise, you cannot specify the
type of view object that DesignSync creates, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are not
actual files; thus, you cannot apply the dssUnlockFileP
function to this type of object.

t_branch Branch name. By default, dssUnlockFileP unlocks the current
branch of the file in your workspace. If the file is not in your
workspace, then by default the selector of the library or parent
folder is used.

g_silent Run silently (t). (Default)
g_background Run command in the background (t). By default, commands

run in the foreground (nil). DesignSync DFII adds background
commands to the Background Queue. Use the graphical
interface command, Synchronicity => Options => Show
Background Queue to view the queue.

See Error Handling and Diagnostics: Return Values and
Background Commands for information about the output of
background commands.

Value Returned

Returns a list of pass and fail counts; the first integer represents the number of
successful unlocks and the second integer represents the number of failures. The
dssUnlockFileP function lets you unlock a single file, so the returned list is (1 0) if
the unlock is successful and (0 1) if the unlock fails. The function raises an error if
argument checking fails. In all other failure cases, the function either raises an error or
returns nil.

DesignSync Data Manager DFII SKILL Programming Interface Guide

98

dssViewDataSheetP
dssViewDataSheetP(
 t_fileName | t_libName [t_cellName] [t_viewName]
)
=> t/nil

Description

Displays the data sheet (in your HTML browser) for the specified object (library, cell,
view, file, or directory).

Arguments

t_fileName File or module name. (Required unless you specify a library
name.)

Module objects can be specified by full path.

DesignSync objects can be specified as a full path or a path
relative to the current working directory or library, for library, for
example <libname>/cdsinfo.tag or
<libname>/<cellname>/prop.xx.

Note:

• DesignSync creates objects called <name>.sync.cds to
represent Cadence views, where <name> corresponds to
the name of the view folder, for example:
~/ttlLib/and2/symbol.sync.cds. These objects
are not actual files; thus, you cannot apply the
dssViewDataSheet

• You can also specify a directory to view the data sheet for
that directory.

 function to this type of object.

t_libName Library name. (Required unless you specify a file name:
t_fileName.)

t_cellName Cell name.
t_viewName View name.

Value Returned

Returns t if the data sheet can be displayed, otherwise, returns nil. The function
raises an error if argument checking fails.

Revision Control Functions

99

Example

The following examples show the invocation of the dssViewDataSheetP function.

In this example, the data sheet for a file is requested.

dssViewDataSheetP("/home/users/joe/libs/smallLib/cdsinfo.tag")
=> t

Because smallLib is a library defined in this user's cds.lib file, the following
specification is equivalent:

dssViewDataSheetP("smallLib/cdsinfo.tag")
=> t

In this example, the data sheet for a cell view is requested:

dssViewDataSheetP("smallLib" "and2" "symbol")
=> t

dssViewVersionHistoryP
dssViewVersionHistoryP(
 t_fileName | t_libName [t_cellName [t_viewName]]?all g_all
 ?branch g_branch ?descendants g_descendants ?lastBranches
g_lastBranches ?lastVersions g_lastVersions ?maxTags g_maxTags
?report t_report?memberVault g_memberVault
)
=> t/nil

Description

Displays the version history (in a text window) for the specified file, module or cell view.

Arguments

t_fileName File or workspace module name. (Required unless you specify a
cell view: t_libName t_cellName t_viewName.)

Module objects can be specified by full path.

DesignSync objects can be specified as a full path or a path
relative to the current working directory or library, for library, for
example <libname>/cdsinfo.tag or

DesignSync Data Manager DFII SKILL Programming Interface Guide

100

<libname>/<cellname>/prop.xx.

Note: DesignSync creates objects called <name>.sync.cds to
represent Cadence views, where <name> corresponds to the
name of the view folder, for example:
~/ttlLib/and2/symbol.sync.cds. These objects are not
actual files; thus, you cannot apply the dssViewDataSheet
function to this type of object.

t_libName Library name. (Required unless you specify t_fileName.)
t_cellName Cell name. (Required unless you specify t_fileName.)
t_viewName View name. (Required unless you specify t_fileName.)
g_all Include all branches (t). Default is f, only include current

branch.
g_branch The branch name of the desired branch. Empty by default.
t_descendants Number of descendant versions. This field is ignored when

g_all is T.
t_lastBranches Number of branches, from the current version back, to report on. Must

be a positive integer.
t_lastVersions Number of versions, from the current version back, to report on.

Must be a positive integer.
t_maxTags Maximum number of tags to report for a branch or version. Must

be a positive integer.
t_report Report mode keys. For a list of valid report mode keys and

explanation of the keys, see ENOVIA Synchronicity DesignSync
DFII User's Guide: Version History Report Options.

g_memberVault t/nil boolean value indicating whether the command runs on the
individual module member vault object or the the parent module.
 When the value is t, the command runs on the individual
member vault (Default). When it is nil, the command runs on the
parent module, providing a module history containing only the
changes to the specified member.

Note: When you specify a filename with the memberVault, you
must include two sets of nil values between the filename value
and the memberVault value.

Value Returned

Returns t if the version history can be displayed, otherwise, returns nil. The function
raises an error if argument checking fails.

Example

Revision Control Functions

101

The following examples show the invocation of the dssViewVersionHistoryP
function.

In this example, the version history for a file is requested.

dssViewVersionHistoryP("/home/users/joe/libs/smallLib/cdsinfo.ta
g")
=> t

Because smallLib is a library defined in this user's cds.lib file, the following
specification is equivalent:

dssViewVersionHistoryP("smallLib/cdsinfo.tag")
=> t

In this example, the version history for a cell view is requested:

dssViewVersionHistoryP("smallLib" "and2" "symbol")
=> t

103

Menu Customization Functions

Customizing the Synchronicity Menu
You (or your project leader) can configure the Synchronicity menu, selectively removing,
adding, or reordering submenus and commands. For example, if your team uses scripts
to place libraries under revision control, your project leader might remove Configure
Library from the Synchronicity menu. Or if your team policy is never to delete cell view
versions from the vault, you can remove Delete => Version.

You can control your menu configurations based on user level, whether the menu is in
the CIW or cell view (also known as design editor or DE) window, and for both short and
full versions of the cell view menu (see the DesignSync Data Manager DFII User's
Guide: Controlling the Synchronicity Menu on Cell View Windows).

This section describes the SKILL functions used to configure the Synchronicity menu.
These functions are defined when dssInit.il is loaded (see the DesignSync Data
Manager DFII User's Guide: Loading the DesignSync Integration into DFII).

dssMenuAddItemP
dssMenuAddItemP(
 t_menu tl_items t_relative [?post g_post]

Description

)
=> t/error

Adds a menu item or submenu to a menu. If a menu item to be added is not already
defined, you must first define it using the dssMenuAddValidItemP function, then use
the dssMenuAddItemP function to specify where to place an instance of the new menu
item within the existing menu structure.

Arguments

t_menu The name of a menu to which the specified menu item or
submenu is to be added (CIWNovice, CIWAdvanced,
CIWExpert, DENoviceFull, DEAdvancedFull,
DEExpertFull, DENoviceShort, DEAdvancedShort or
DEExpertShort). (Required)

tl_items Either the name of a predefined menu item or a list containing a
new submenu name followed by its predefined menu items.
(Required) Note: The predefined menu items can be menu
items that already exist in the DesignSync DFII interface or you

DesignSync Data Manager DFII SKILL Programming Interface Guide

104

can define them using the dssMenuAddValidItemP function.
The name of an existing menu item or submenu on the specified
menu next to which the new item or submenu is to be added.
 To view the structure of the menu in order to choose where to
insert the new item, use the dssMenuListMenuP function.
 (Use the g_post argument to specify whether the new item is
to be added before or after the existing item.) (Required)

t_relative

By default, the item is placed before the relative menu item or
submenu (nil). Specify t to place the item after the relative
menu item or submenu (t_relative). If t_relative is a
submenu, then the new item is placed before or after that entire
menu and not as an item on that menu.

g_post

Value Returned

Returns t if the item or submenu is successfully added. Raises an error if the menu or
the relative item is not found.

Example

The following example adds the Delete Version menu item to the short version of the
DE menu in expert mode only, after the existing Delete item:

dssMenuAddItemP("DEExpertShort" "DeleteVersion" "Delete" ?post
t)

syncUseEditWindowShortMenu = t

dssMenuRefreshP()

The first line adds the menu item. The second line turns on the use of the short menu
on DE windows. The last line refreshes the displayed menus.

dssMenuAddValidItemP
dssMenuAddValidItemP(
 t_item r_initItem [?uninitItem r_uninitItem]
)

Description

=> t

Adds a new entry to the list of allowed menu items. This new menu item is specified as
an existing SKILL menu item type. You can use the SKILL hiCreateMenuItem

Menu Customization Functions

105

function to create a new type of SKILL menu item or use an existing SKILL menu item.
 See the Cadence SKILL documentation for more information about SKILL menu items.

If the menu item you are defining already exists, it is redefined with the SKILL menu
items you specify using the r_initItem and r_uninitItem arguments.

Arguments

t_item The name of the new menu item to be defined. (Required)
r_initItem The SKILL menu item used to specify the new menu item. This

menu item is used if the resulting form is to be initialized with the
details of the current DE window cell view. (Required)
The SKILL menu item to be used if the resulting form is not to
be initialized with the details of the current DE window cell view.
 The r_uninitItem argument is optional; include it only if
there are circumstances when a form is not to be initialized. If
the r_uninitItem argument is not specified, then the
r_initItem menu item is always used. If you create a SKILL
menu item using the SKILL hiCreateMenuItem function,
ensure that the menu callbacks are designed to appropriately
take advantage of this feature.

r_uninitItem

Value Returned

Returns t.

Example

The following example shows how to create a new menu item and use the item within a
Synchronicity menu. The hiCreateMenuItem SKILL function creates a SKILL menu
item, myMenuItem, which prints the current time. Next, the dssMenuAddValidItemP
function creates a new menu item, Time, defined as a myMenuItem SKILL menu item.
 Finally, the dssMenuAddItemP function adds the new menu item, Time, to the
advanced mode of the CIW menu, before the existing Options item.

myMenuItem = hiCreateMenuItem(?name 'myMenuItem ?itemText "Time"
?callback "println(getCurrentTime())")

dssMenuAddValidItemP("Time" myMenuItem)

dssMenuAddItemP("CIWAdvanced" "Time" "Options")

dssMenuRefreshP()

DesignSync Data Manager DFII SKILL Programming Interface Guide

106

dssMenuListItemsP
dssMenuListItemsP(
 [?print g_print]
)
=> l_names

Description

Returns, and optionally prints, the names of all valid menu items.

Arguments

g_print Specifies whether the names should be printed, as well as
returned, by the function call (t). By default, the names are only
returned by the function and not printed (nil).

Value Returned

l_names A list of all the valid menu items.

dssMenuListMenuP
dssMenuListMenuP(
 [?menu t_menu] [?port p_port]
)

Description

=> t

Prints the existing structure for one or all of the menus. The menu structure includes the
name of each menu item and the submenus within it. Each submenu level is indented
and preceded by the submenu name.

There are nine different menus stored, depending on the user level, whether the menu
is in the CIW or DE window, and whether the menu is in the short or full version of the
DE window.

Arguments

t_menu The name of a menu (CIWNovice, CIWAdvanced, CIWExpert,
DENoviceFull, DEAdvancedFull, DEExpertFull,
DENoviceShort, DEAdvancedShort or DEExpertShort).

Menu Customization Functions

107

 To view the structure of all menus, specify all. (Default)
p_port A SKILL port to which the output is to be written. The default port

is poport.

Value Returned

Returns t.

dssMenuLoadConfigP
dssMenuLoadConfigP(
 t_fileName
)

Description

=> t/error

Load the menu configuration from the specified file. This is a simple alias for the SKILL
load function; the menu configuration file is stored in a SKILL executable format. In
addition to the menu configuration saved by the dssMenuSaveConfigP function, the
SKILL file can also contain custom menu item definitions.

Arguments

t_filename Name of the file from which to load the menu structure and any
additional custom menu definitions. (Required)

Value Returned

Returns t if the menu configuration is successfully loaded. Raises an error if the file
cannot be opened.

dssMenuRefreshP
dssMenuRefreshP()

Description

=> t

Refreshes the menus attached to all windows using the currently stored menu
definitions. Call this function after making any changes to the menu structures. Call this
function also after changing variables that control whether the long or short menus are
used and whether CIW callbacks initialize the forms.

DesignSync Data Manager DFII SKILL Programming Interface Guide

108

Arguments

None.

Value Returned

Returns t.

dssMenuRemoveItemAllP
dssMenuRemoveItemAllP(
 t_item
)
=> t

Description

Removes a menu item or submenu from all menus where it is currently used.

Arguments

t_item The name of a menu item or submenu name. (Required)

Value Returned

Returns t.

dssMenuRemoveItemP
dssMenuRemoveItemP(
 t_menu t_item [?silent g_silent]
)
=> t/error

Description

Removes a menu item or submenu from a menu. The first matching item or submenu
(using a depth-first search) is removed. To remove an item or submenu from all menus,
use the dssMenuRemoveItemAllP function.

Arguments

t_menu The name of a menu from which you are removing the specified
menu item (CIWNovice, CIWAdvanced, CIWExpert,

Menu Customization Functions

109

DENoviceFull, DEAdvancedFull, DEExpertFull,
DENoviceShort, DEAdvancedShort or DEExpertShort).
 (Required)

t_item The name of a menu item or submenu name to be removed.
(Required)

g_silent Run silently (t). (Default)

Value Returned

Returns t if the item or submenu is successfully removed. Raises an error if the
specified item is not currently on the menu.

Example

The following example removes the Delete => Version item from the CIW and DE
menus in novice mode:

dssMenuRemoveItemP("CIWNovice" "Delete->Version")

dssMenuRemoveItemP("DENoviceFull" "Delete->Version")

dssMenuRefreshP()

The first two lines remove the menu item from the menus. The last line refreshes the
displayed menus.

dssMenuRemoveValidItemP
dssMenuRemoveValidItemP(
 t_item
)

Description

=> t

Removes the specified item from the list of allowed menu items. Note that if the
specified item is currently used in the menu structures, warnings are generated when
the menus are refreshed.

Arguments

t_item The name of the existing menu item to be removed from the list

DesignSync Data Manager DFII SKILL Programming Interface Guide

110

of valid menu items. (Required)

Value Returned

Returns t.

dssMenuSaveConfigP
dssMenuSaveConfigP(
 t_fileName
)

Description

=> t/error

Saves the current menu structures in the specified file. Note that the list of valid menu
items is not saved, as it contains references to SKILL menu items, which cannot be
stored.

This function is intended as a simple way of storing a menu structure once it has been
created. If you use custom menu items, then you also need to store the commands
required to create those menu items and add them to the list of valid items. However,
you can store these additional commands in the same file used to save the menu
structure (specified with the t_filename argument) because the structure of the file is
a SKILL source code file. To load the menu structure and any additional custom menu
item definitions, use the dssMenuLoadConfigP function, which calls the SKILL load
function.

Arguments

t_filename Name of the file in which to store the menu structure. (Required)

Value Returned

Returns t if the menu configuration is successfully saved. Raises an error if the file
cannot be opened.

dssRefreshWindowBannerP
dssRefreshWindowBannerP(
 [?windows rl_windows]
)
=> t/nil

Menu Customization Functions

111

Description

Refreshes the window banner for one or more windows.

Arguments

rl_windows The identifier of a window or a list of windows to refresh. The
default is to refresh all windows. To list all the windows that
currently exist, use the hiGetWindowList()SKILL function.

Value Returned

Returns t if the windows have been successfully refreshed; otherwise, returns nil.

113

Miscellaneous Functions

dssChangeDefaultsContextP
dssChangeDefaultsContextP(
 [?context t_context]
)
=> t_context

Description

Changes the context of default values that are saved, when using Save Defaults in a
DesignSync DFII form. See the DesignSync Data Manager DFII User's Guide: Setting
Form Default Values. Default values can be saved by an individual user, for a project
team, or for all users of a site's software installation. Similarly, the context determines
which default values are removed, either for a user, a project team, or the entire site.
See the DesignSync Data Manager DFII User's Guide: Viewing and Resetting Form
Defaults.

By default, the saving and removing of default values apply only to the user who
invoked DesignSync DFII.

If you are a project leader, and set your context to project, your saving and removing
of default values will apply to all members of the project team. See DesignSync Data
Manager Administrator's Guide: Project-Specific Configuration. Individual users can
override default values that were set for their project team.

If you are the site administrator, and set your context to site, your saving and
removing of default values will apply to all users of the software installation. See
DesignSync Data Manager Administrator's Guide: Site-Wide Configuration. Project
leaders can override default values that were set site-wide.

Invoke the dssChangeDefaultsContextP function with no argument to determine
the current context.

Arguments

t_context The context to change to (user, project, or site). (Optional)
If not specified, the context remains unchanged.

Value Returned

t_context Returns the updated context if the t_context argument was

DesignSync Data Manager DFII SKILL Programming Interface Guide

114

specified; otherwise, returns the existing context.

dssChangeUserLevelP
dssChangeUserLevelP(
 [?level t_level]
)
=> t_level

Description

Changes the user level for the current user to the level specified. Invoke the
dssChangeUserLevelP function with no argument to determine the current user level.
 See DesignSync DFII Help: Selecting a User Level for a description of the user levels.

Arguments

t_level User level to change to (novice, advanced, or expert).
(Optional) If not specified, level remains unchanged.

Value Returned

t_level Returns the updated user level if the t_level argument was
specified; otherwise, returns the existing user level.

dssEnableDebugP
dssEnableDebugP(
 [?enable g_enable]
)
=> t/nil

Description

Turns debug mode on or off. With debug mode enabled, DesignSync DFII generates
output in the CIW, displaying all commands sent to the stclc process and the output
from those commands.

Arguments

g_enable Enable debugging (t). Default. To turn off debugging, set
g_enable to 'nil'.

Miscellaneous Functions

115

Value Returned

Returns t if debug mode is successfully enabled (g_enable set to 't'). Returns nil if
debug mode is successfully turned off (g_enable set to 'nil').

dssExecuteTclP
dssExecuteTclP(
 t_cmd [?print g_print] [g_args]...
)
=> l_result

Description

Executes a Tcl command in the stclc process used by DesignSync DFII. You can
choose whether to print the output of the command and return values to the CIW.

Note: DesignSync commands invoked via dssExecuteTclP do not use the command
line defaults system. The command line defaults system only pertains to DesignSync
command line shells.

Arguments

t_cmd Tcl command to be executed. (Required) This argument can be
a format string as used for the printf function.

g_print Print the output and return values to the CIW (t). By default, the
output is not printed to the CIW.

g_args Any additional values required by the t_cmd argument.

Value Returned

l_result List of strings, one for each line of output, including return
values.

If the g_print argument is set to 't', the output and return values display in the CIW.

Example

The following example calls the DesignSync synctrace command to turn on
command tracing. See the ENOVIA Synchronicity Command Reference for more
information about the synctrace command.

dssExecuteTclP("synctrace set 0")

DesignSync Data Manager DFII SKILL Programming Interface Guide

116

dssHelpP
dssHelpP()
=> t

Description

Displays the the DesignSync Data Manager DFII User's Guide main page in a web
browser.

Arguments

None.

Value Returned

Returns t.

dssSetWorkspaceRootPathP
dssSetWorkspaceRootPathP(

 tl_path

)
=> t/nil

Description

Sets the workspace root path. The workspace root path is a list of paths to modules
that are not in the current working directory for the Cadence cIient or known library
directories.

Arguments

tl_path List of directory paths.

Value Returned

Returns t if the workspace root path is set successfully, otherwise, returns nil.

Example

Miscellaneous Functions

117

The following example sets the workspace root paths.

dssSetWorkspaceRootPathP()

dssGetWorkspaceRootPathP
dssGetWorkspaceRootPathP()
=> l_path

Description

Returns the workspace root path. The workspace root path is a list of paths to
workspace module roots that are not in the current working directory for the Cadence
cIient or known library directories.

Arguments

Value Returned

l_path List of directory paths.

Example

The following example lists the workspace root paths.

dssGetWorkspaceRootPathP()

=> ("/home/rsmith/cadenceworkspaces/" "/home/rsmith/MyMods/")

119

Getting Assistance

Using Help
ENOVIA Synchronicity Product Documentation provides information you need to use
the products effectively. The Online Help is delivered through WebHelp ® , an HTML-
based format.

Note:

Use SyncAdmin to change your default Web browser, as specified during ENOVIA
Synchronicity tools installation.

To open the DesignSync Data Manager DFII SKILL Programming Interface Guide,
do one of the following:

 Enter the following URL from your Web browser:

http://<host>:<port>/syncinc/doc/dsdfiiref/dsdfiiref.htm

where <host> and <port> are the SyncServer host and port information. Use this
server-based invocation when you are not on the same local area network (LAN)
as the DesignSync installation.

 Enter the following URL from your Web browser:

file:///$SYNC_DIR/share/content/doc/dsdfiiref/dsdfiiref.htm

where $SYNC_DIR is the location of the DesignSync installation. Specify the
value of SYNC_DIR, not the variable itself. Use this invocation when you are on
the same LAN as the installation. This local invocation may be faster than the
server-based invocation, does not tie up a server process, and can be used even
when the SyncServer is unavailable.

When the Online Help is open, you can find information in several ways:

• Use the Contents tab to see the help topics organized hierarchically.
• Use the Index tab to access the keyword index.
• Use the Search tab to perform a full-text search.

Within each topic, there are the following navigation buttons:

• Show and Hide: Clicking these buttons toggles the display of the navigation (left)
pane of WebHelp, which contains the Contents, Index, and Search tabs. Hiding
the navigation pane gives more screen real estate to the displayed topic.

DesignSync Data Manager DFII SKILL Programming Interface Guide

120

Showing the navigation pane gives you access to the Contents, Index, and
Search navigation tools.

• << and >>

You can also use your browser navigation aids, such as the Back and Forward
buttons, to navigate the help system.

: Clicking these buttons pages to the previous or next topic in the help
system.

Related Topics

Getting a Printable Version of Help

Getting a Printable Version of Help
The DesignSync Data Manager DFII SKILL Programming Interface Guide is available in
book format from the ENOVIA Documentation CD or the
DSDocumentationPortal_Server installation available on TheLink. The content of the
book is identical to that of the help system. Use the book format when you want to print
the documentation, otherwise the help format is recommended so you can take
advantage of the extensive hyperlinks available in the DesignSync Help.

You must have Adobe® Acrobat® Reader™ Version 8 or later installed to view the
documentation. You can download Acrobat Reader from the Adobe web site.

Related Topics

Using Help

Accessing Product Documentation
You can access the complete set DesignSync and ProjectSync documentation through
the ENOVIA Synchronicity Product Documentation page.

To access the Product Documentation page, click ENOVIA Synchronicity Product
Documentation.

To access the Product Documentation page from outside this help system, enter one of
the following URLs from your Web browser:

file:///<SYNC_DIR>/share/content/doc/index.html

-or-

http://<host>:<port>/syncinc/doc/index.html

Getting Assistance

121

Contacting ENOVIA

• For solutions to technical problems, please use the 3ds web-based support system:

• http://media.3ds.com/support/

• From the 3ds support website, you can access the Knowledge Base, General Issues,
Closed Issues, New Product Features and Enhancements, and Q&A's. If you are not
able to solve your problem using this information, you can submit a Service Request
(SR) that will be answered by an ENOVIA Synchronicity Support Engineer.

• If you are not a registered user of the 3ds support site, send email to ENOVIA
Customer Support requesting an account for product support:

• enovia.matrixone.help@3ds.com

Related Topics

Using Help

123

DesignSync Glossary

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

acadmin

A command-line interface for managing access controls. DesignSync also provides a
graphical Web-based interface, Access_Administrator.

accelerator key

An accelerator key is a key associated with a menu choice. Pressing the accelerator
key is acts as a shortcut to selecting the menu choice. For example, pressing F7 has
the same effect as selecting Revision Control => Check In.

Access Administrator

A web-based interface for managing access controls graphically. DesignSync also
provides a command-line interface, acadmin.

access control

A means of protecting design objects so that only an authorized user or user group can
perform operations on objects. The access control commands also let you limit the
operations and design objects these users can access. See also the Access Control
Guide.

active selection

At any given time, both the tree view and list view can contain a set of selected objects.
However, only one of these sets is the active selection. Most menu choices operate an
the active selection. The view that does not contain the active selection indicates this by
using a faded color to highlight selected objects. You can make either the tree view or
the list view the active selection by clicking on the view or setting the keyboard focus to
that view.

add

An operation to designate an object not currently under revision control as a member of
a module.

administrator

DesignSync Data Manager DFII SKILL Programming Interface Guide

124

A person who sets up an ENOVIA Synchronicity tool, for example DesignSync or
ProjectSync for use by others. The set-up can include defining access_controls, note
types, command defaults, client defaults etc.

aggregate view data

The candidate set of module members that results when you apply more than one
module view to a workspace. DesignSync uses the initial view data from each view to
build an aggregate view which is then populated. Filters and hreffilters can then be
applied to the aggregate view data which results in the data populated into the
workspace.

Apache

A public domain web server. The widely used Apache server is developed and
maintained by the Apache Server Project. See the Apache web site, www.apache.org,
for more information.

authentication

Verification performed by a software product to ensure that a particular user has the
right to use the product or components of the product. DesignSync provides the
capability of protecting your design data and preventing unauthorized users from
accessing your data through the access control commands. See also DesignSync Data
Manager User's Guide: Accessing a SyncServer with User Authentication, Access
Control Guide: User Authentication Access Controls.

auto branching

A type of branching in which a new branch is created automatically if one does not
already exist as part of a checkin or checkout with lock. Auto-branching useful when a
developer wants to explore a "what if" scenario.

B

base directory

See module base directory.

bookmark

A placeholder you create in DesignSync to let you quickly visit a working directory, file,
or vault you access often. See also DesignSync Data Manager User's Guide:
Bookmarks.

branch

Source_Glossary

125

A thread of development of a managed design object that diverges from the main
development thread of the object. The main branch (Trunk) is designated with branch
number 1 and files on this branch have version numbers 1.1, 1.2, 1.3, and so on. The
branch number always has an odd number of digits and the version number for a design
object always has an even number of digits. For example, if you create the first branch
from version 1.2 of a design object, the branch is designated 1.2.1 (a second branch
would be designated 1.2.2) and the first version on that branch is 1.2.1.1. In this
example, version 1.2 of the design object is referred to as the branch point version. See
also DesignSync Data Manager User's Guide: Creating Branches.

branch-point version

A design object version that is the root of a new branch. For example, if you create a
new branch off version 1.2 of a design object, that version is the branch-point version. If
this is the third branch off this version, it is designated 1.2.3, and the first version on the
new branch is 1.2.3.1. See also DesignSync Data Manager User's Guide: Creating
Branches.

branch tag

A tag can be applied to either a branch or an object version. A tag applied to a branch is
called a branch tag. See also tag, immutable, mutable, version tag, DesignSync Data
Manager User's Guide: Tagging Versions and Branches.

C

cache

• An area on a LAN (local area network) where common files used by a team can
be stored to avoid redundant local copies. A cache gives users their own view of
the design data, while minimizing disk utilization. DesignSync caches are
implemented using UNIX hard links and symbolic links, depending on the system
setup. For clarity, the documentation refers to these types of caches as file
caches or LAN caches. See also LAN,

There is no support on Windows for cached files.

Caches are not intended for use with modules. For information on cached modules,
see Module Cache.

• The directory that DesignSync uses for temporary files during operations such as
comparing file versions.

cancel

To undo a checkout. Cancel removes the locks on specified checked-out objects.

DesignSync Data Manager DFII SKILL Programming Interface Guide

126

category

A module category is a virtual path to a module within the module area. All modules are
stored in the Modules area. Categories provide a means to separate and organize the
modules into related groups. Categories are created implicitly when you specify a
module path in at module creation time.

cell

The fundamental element of Milkyway design data on which users operate. A cell
always contains at least one file with a name that has the form
<cell_name>:<local_version>, for example, route:1. A cell may contain attached files,
whose names have the form <cell_name>:<local_version>_<number> (where number is
any integer). For example, route:1_2.

In the file system, the files that make up a cell are located in a view directory. See also
view.

cell view collection

A collection object that represents a Milkyway cell in a Milkyway view directory.
DesignSync displays this object as cell.sync.mw, where cell is the cell name, for
example, route.sync.mw. A cell view collection includes a cell view file and additional
files called cell view attachment files.

Cell View File

A member of the DS MW cell view collection. This file is the primary cell file. The file has
a name that has the form <cell_name>:<local_version>, for example, route:1.

cell view attachment file

A member of the DS MW cell view collection. This file is an attached file of the cell, a file
whose name has the form <cell_name>:<local_version>_<number> (where number is
any integer). For example, route:1_2.

cell view non-member

A DS MW cell view file or cell view attachment file that is part of a local version that is
not the highest local version of the cell in the workspace. For example, suppose a cell
named route has local versions route:1 and route:2. The file route:2 is a cell
view file but the file route:1 is a cell view nonmember. Nonmembers are not part of
the current cell collection.

A cell view non-member can also be a cell view attachment file that is no longer
attached to the cell. Such a non-member can occur due to an error situation in the

Source_Glossary

127

Synopsys Milkyway tools. DesignSync does not consider these "unattached" attached
files to be part of a collection; DesignSync identifies them as non-versionable and does
not check them into the vault.

cell view lock

A file created by the Milkyway tools. This file is a temporary file and cannot be checked
in to the DesignSync vault.

cell view tmp file

A file created by the Milkyway tools. This file is a temporary file and cannot be checked
in to the DesignSync vault.

checkin

Process of storing a snapshot of a design object in a vault. The new snapshot is called
a version. See DesignSync Data Manager User's Guide: Checking in Design Files.

checkout

Process of making a revision-controlled design object available in your local area. You
can check out a locked or unlocked copy of the object, a link to a cache or mirror copy
of the object, or a reference to the object. See also populate, DesignSync Data
Manager User's Guide: Checking out Design Files.

client

A process communicating with a server process in order to use a service provided by
the server. The service provided by the SyncServer process is the management of
design objects under revision control. There are 5 DesignSync client applications:
DesSync (DesignSync GUI), dss (DesignSync Shell), dssc (concurrent dss), stcl
(Synchronicity Tcl), and stclc (concurrent stcl). There are also integrations (or add-ons)
into clients to support management of design objects through the software used to
create and edit those objects, for example DSDFII provides access to Cadence data,
and DSVS provides access to Visual Studio projects. See also server, DesSync, dss,
dssc, stcl, stclc, DesignSync Data Manager User's Guide: DesignSync Command-Line
Shells.

client defaults

Most of the graphical forms used to run commands in the graphical clients, for example
DSDFII, DSVS, and DesSync, allow you to save the options settings as the default
value for the commands. When the command form is run again, the form preselects the
saved defaults. If you do not wish to use those defaults, you can manually select

DesignSync Data Manager DFII SKILL Programming Interface Guide

128

different settings. These client defaults are entirely independent of each other and the
command defaults allowing you to finely customize your environment.

client trigger

A trigger that is executed on the client. See also trigger, DesignSync Data Manager
Administrator's Guide: Triggers Overview.

collection object

A group of files that together define a design object and are revision controlled as a
single object. For example, a schematic may consist of dozens or even hundreds of files
within any number of folders. You operate on the design object as a single entity while
letting your design tools manage the object at the file level. See also DesignSync Data
Manager User's Guide: Collections Overview.

command defaults

Default values can be set for the options specified to commands run from the command
line. Default values can be set for individual commands, command families (such as all
"access" sub-commands), or all commands. This simplifies invocations of commands
from the command line, because the user does not need to specify "-[option] <value>"
for the saved default value. Command defaults can be set by the administrator for all
users on the server, or by individuals for their own commands. See also client defaults,
 Command Reference: command defaults.

components

Files or other objects that made up a project's hierarchy.

Physical - When using DesignSync, physical components are the files and directories
created automatically during the normal process of checking in a design.

Logical - A logical component is an artificial project category set up for the explicit
purpose of distinguishing where notes should be attached.

compression

Conversion of a data representation into an equivalent but smaller representation
requiring fewer bytes. Compression optimizes storage space and speeds up
transmission of data. DesignSync compresses data in its vaults. See also DesignSync
Data Manager Administrator’s Guide:Turning Off Compression.

configuration

See configuration management.

Source_Glossary

129

configuration management

Associated design objects that together form a snapshot of a design project.
DesignSync provides two methods of associating design objects: grouping the objects
together into a module, or applying a common tag to the design objects. Modules can
also be tagged and associated with other modules using tags or hierarchical references.

copy out

See fetch.

CVS

Concurrent Versions System. A software tool for UNIX systems that manages multiple
versions of files, tracking changes and controlling shared files. CVS uses a merging
work style where a design team does not lock file versions, but instead merges their
edits with the latest checked-in version. See also merging work style.

D

data sheet

The information about an object under DesignSync revision control displayed in an
HTML browser or the DesSync client. The information displayed depends on the type of
object. For example, the data sheet for a file in your working folder contains its lock
status, modification status, version number, and associated tags. See also DesignSync
Data Manager User's Guide: What Are Data Sheets?.

DES

Data Encryption Standard. A highly effective data encryption algorithm developed at
IBM in 1977. DES uses 72 quadrillion (72,000,000,000,000,000) encryption keys,
chosen at random during encryption. Communication between DesignSync and
SyncServers uses the DES encryption algorithm for encryption. See also encryption.

DesignSync web interface

The DesignSync web interface, built into ProjectSync, provides a method of configuring
your DesignSync environment and users through a Web-page based interface.

design configuration

See configuration_management.

designer role

DesignSync Data Manager DFII SKILL Programming Interface Guide

130

A user who contributes to the development of block or modules in a SITaR environment.

DesSync

The DesignSync graphical user interface (GUI), one of the DesignSync client
applications. To invoke the GUI, enter "DesSync" from your operating-system window
(UNIX or Windows). See also client, dssc, stclc, Command Reference: DesSync
command description.

domain name

A unique alphanumeric identifier for a computer resource on the Internet. A domain
name is a meaningful descriptor for a web resource used in lieu of its IP address, a
string of digits. An example of a domain name is host.yourcompany.com. See also IP
address, DNS.

DNS

Domain Name System. A system for maintaining a distributed list of Internet domain
names and their corresponding IP addresses. DNS locates the domain names and
translates these into IP addresses accessible by computers on the Internet. See also
Internet, domain name, and IP address.

DSDFII

ENOVIA Synchronicity DesignSync® DFII(TM) is the integration of many DesignSync®
design-management (DM) capabilities into the Cadence Design Systems DFII
environment. See also DesignSync Data Manager DFII User’s Guide

DS MW

ENOVIA Synchronicity DesignSync® MW(TM) (DS MW) is the integration of many
DesignSync design management capabilities into the environment of Milkyway-based
tools. A Milkyway-based tool reads and writes to a set of files that conform to the
Milkyway database, as defined by Synopsys. DesignSync MW provides features to
manage large, geographically dispersed projects. See also DesignSync Data Manager
MW User’s Guide.

dss

The DesignSync shell, one of the DesignSync client applications. To invoke dss, enter
"dss" from your operating-system window (UNIX or Windows). You can also enter "dss"
followed by a DesignSync command to execute a single command. In most cases, use
dssc (concurrent dss) instead of dss to take advantage of the concurrent client
capabilities. The dss client uses syncd to communicate with a SyncServer. See also

Source_Glossary

131

dssc, client, Command Reference: dss command description, DesignSync Data
Manager's User's Guide: DesignSync Command-Line Shells.

dssc

The concurrent version of the DesignSync shell (dss). The dssc client has several
advantages over dss, because it's designed to be used concurrently with other client
processes. To invoke dssc, enter "dssc" from your operating-system window (UNIX or
Windows), optionally specifying a single DesignSync command to execute. The dssc
client does not use syncd to communicate with a SyncServer. See also dss, client,
Command Reference: dssc command description, DesignSync Data Manager User's
Guide: DesignSync Command-Line Shells.

DSVS

ENOVIA Synchronicity DesignSync® VS) is the integration of many DesignSync®
design-management (DM) capabilities into the Microsoft Visual Studio® environment.
See also DesignSync Data Manager for Visual Studio User's Guide.

dynamic href mode

The selector associated with the hierarchical reference is always evaluated to identify
the version of the sub-module to be operated on.

E

EDA

Electronic design automation, the tools and processes that facilitate the design of
electronic systems.

encryption

Process of converting data into a secure format that impedes unauthorized use of the
data. The data is then "decrypted" (or "deciphered") by the intended receiver of the data
using a decryption key -- the algorithm that converts the data back to its original format.
A "strong encryption" is an encryption method that is seemingly impossible to break
without the use of the decryption key. DesignSync encrypts communications between
DesignSync and the SyncServers to protect your design data from unauthorized use
using the DES encryption algorithm. See also DES, DesignSync Data Manager
Administrator's Guide: Overview of Secure Communications.

end user

DesignSync Data Manager DFII SKILL Programming Interface Guide

132

A person who uses the system, but performs no system or site wide configuration or
maintenance. The end-user benefits from the administrator's set-up. In a SITaR
environment, both the designer role and integrator role are end-users.

external module

A link from the DesignSync change management system (CMS) to another CMS. The
files within the external CMS are managed inside DesignSync as a module. This allows
you to fetch a complete code base into a workspace, even when the files are managed
by different change management application, and provides a common application
interface for populate operations.

For more information on external modules, see DesignSync Data Manager System
Administrator's Guide: Overview of External Modules.

F

fetch

To obtain a version of a design object without locking the object. You fetch an object by
performing a populate, checkout, or get operation on objects without a lock. You can
fetch an unlocked copy of the object, a link to a cache or mirror copy of the object, or a
reference to the object. The integrations do not support fetching object references. See
also DesignSync Data Manager System Administrator's Guide: Defining a Default Fetch
State, DesignSync Data Manager User's Guide: Checking out Design Files.

file

A file is a collection of data stored in one unit, under a filename. This can be a
document, a picture, an audio or video file, a library, an application, or other collection of
data.

firewall

A set of programs running on an organization's gateway server that acts as a virtual
barrier, protecting the organization's intranet from outside access. See also gateway
server, intranet.

fixed tag

A logical tag construct applied once to a single snapshot of a set of object versions and
never moved. This tag may be either mutable or immutable. A tag is considered "fixed"
if you keep the tag associated with a particular snapshot rather than reapplying the tag
to newer versions of the design objects. There are no special attributes for DesignSync
tags to indicate whether they are fixed or movable. These terms are used to describe

Source_Glossary

133

ways in which you can use design configuration tags. See also tag, movable tag,
DesignSync Data Manager User's Guide: Using Tags.

folder

A file system directory.

G

gateway server

A computer on an organization's intranet through which all communications between the
intranet and the WWW are transmitted. Firewall software runs on the gateway server,
ensuring that only authorized communications occur. See also firewall, intranet,.

GDM

Generic Data Manager. A Cadence Design Systems API (application programming
interface) used to integrate design management tools into the Cadence architecture.
DSDFII follows the GDM standard and can therefore be used with GDM-based
interfaces, such as Library Manager.

get

Term used for a populate or checkout operation in DSVS. See also fetch.

groupware

Collaborative management tool used by a group of people.

H

Hard link

A hard link (UNIX only) is an additional name for an existing file. Any number of hard
links, and thus any number of names, can be created for any file. Hard links cannot
cross file system boundaries or span across file partitions. The operating system does
not distinguish between the original file name and any hard links that are subsequently
created to that file; other than they are multiple names for the same file because both
point to the same inode. The ownership of the hard link is defined by the original file, not
the creator of the hard link.

Hard links and symbolic links are used to support the DesignSync file cache feature.

For information on cache usage, see the ENOVIA System Administration Guide:
Introduction to Data Replication.

DesignSync Data Manager DFII SKILL Programming Interface Guide

134

Hercules

A Milkyway-based tool that runs layout verification.

hierarchical reference

A dependant link from a module to any of the following: a module branch or version, a
legacy module, a DesignSync vault, or an IP Gear deliverable. The hierarchical
reference link allows you to build a hierarchical structure to model your project usage.
 The SITaR model is one example of how hierarchical references can be used to
facilitate controlled code reuse.

href mode

See hierarchical_reference, normal href model ; static href mode, dynamic href mode.

http

The portion of a URL address that indicates the protocol used by the software to
determine how to access an Internet resource. The "http" protocol supports such
resources as HTML files, CGI applications, and Java applets. See also URL https.

https

The portion of a URL that indicates the protocol used by the software to determine how
to access an internet resource. The "https" protocol supports Secure Sockets Layer
(SSL) communication. See also encryption, URL.

I

immutable

An immutable object, usually a tag, that cannot change. For example, when a module is
created, branch 1 is also created with an immutable tag of "Trunk". This tag is always
associated with this branch. You can also add immutable tags to a version or branch
when you want to uniquely and permanently identify the branch or version. An
immutable tag can be used to designate a fixed tag. See also: mutable, movable tags,
tag.

integrator role

A use who verifies the stability of blocks or modules, and assembles them into
functional packages to provide a qualified and stable integrated code baseline in a
SITaR workflow environment.

initial data

Source_Glossary

135

The module members that are populated into the workspace when there are no module
views and no filter, exclude or hreffilters applied to the data.

initial view data

The contents of a single module view with no filters, excludes, or hreffilters applied to
data. See also aggregate view data. If you load a single module view into the
workspace, this is the set of candidate module members to populate. The data in the
workspace may be further refined by the applying filters and hreffilters.

integrations

Collective term for software packages that have plug-in or add-on DesignSync
capabilities, for example, DSDFII, or DSVS.

Internet

A world-wide system of computer networks initially developed by the Advanced
Research Projects Agency (ARPA) of the US government. The Internet encompasses
the networks and protocols (computer communication conventions) coordinating the
transfer of data between computers.

intranet

A network of computers internal to a company or other organization protected against
unauthorized access.

IP address

Internet protocol address. A unique identifier for the location of a computer resource on
the Internet. An IP address is a string of digits, for example, 127.0.01. See also domain
name, DNS.

IP Gear deliverable

A IP Gear deliverable is a package of data that has been uploaded and associated with
an IP Gear Catalog Component.

J

K

keyword

Placeholder used as a comment in a revision-controlled object to express information
about the design object, for example, the author ($Author$), check-in time ($Date$), or

DesignSync Data Manager DFII SKILL Programming Interface Guide

136

revision number ($Revision$). The values of keywords are expanded when you check in
the object. See DesignSync Data Manager User's Guide: Revision Control Keywords
Overview.

L

LAN

Local area network. A group of interconnected computers able to access data on other
machines on the local network. Using DesignSync, a team can define an area on a LAN
as a cache to share access to revision-controlled design objects. See also cache.

legacy module

A grouped set of DesignSync objects that represent one level of a design hierarchy.
 Legacies modules can be grouped into configurations, aliases, or releases, but the
individual objects are managed independently. Legacy modules were obsoleted with
version 5.0 which introduced a new type of module managed as a single entity in
DesignSync. Legacy modules can still be included in a module hierarchy as a sub-
module to a module. Legacy modules can also be upgraded to modules. See also
hierarchical reference, DesignSync Data Manager User's Guide: Upgrading Legacy
Modules.

library

A directory tree of Milkyway data. The library has the same name as the top directory.
The top directory of a library always includes the library file, a binary file called lib.

library file

A binary file containing metadata about a Milkyway library. Each Milkyway library has a
library file, called lib, which resides in the top directory of the library. The information in
the library file includes:

• Details of the views/cells present in the library
• Library technology information
• A list of reference libraries
• Details of library attached files
• General library properties added by various tools
• Information on logical equivalence of cells

The library file is specific to the subset of cells that has been populated to a user's
workspace. Two users might be collaborating on the same library, but each may have
populated a different subset of cells to the workspace and therefore each may have a
different library file. DS MW properly handles this file, allowing multiple users to
collaborate on the same library.

Source_Glossary

137

library attachment

In Milkway, A file attached to a library. The file is named in the form lib_X.

library lock

The Milkyway lock file, which is a file named .lock that resides in the library directory.
This file is a temporary file and cannot be checked in to the DesignSync vault.

library shadow collection

A collection object that encompasses the shadow files for the Milkyway lib file and its
attached files. DesignSync displays this object as shadow.sync.mw.lib. A library
shadow collection object contains the library file shadow and library attachment shadow
files.

library file shadow

A member of the DS MW library shadow collection. This file contains a copy of the
contents of the Milkyway library file (lib). The file has the name shadow.lib.

library attachment shadow

A member of the DS MW library shadow collection. This file contains a copy of the
contents of the lib_X attached file. The file has the name shadow.lib.X.

An export Other Library Information operation copies the library file (lib) to the
shadow.lib file and copies the library attached files (lib_X) to shadow.lib.X.
Together these files form the library shadow collection object (shadow.sync.mw.lib).
The export Other Library Information operation then checks in the library shadow
collection object to the DesignSync vault.

When you import Other Library Information (using the Import Library Information form)
DesignSync fetches the library shadow collection object from the vault to your
workspace and loads the Other Library Information into your library file.

link

See symbolic link.

Local version

Multiple versions of a cell in Milkyway can exist in a library at the same time. Milkyway-
based tools always operate on the version with the highest number in the library. This
DS MW documentation refers to this as the local version, to distinguish it from a

DesignSync Data Manager DFII SKILL Programming Interface Guide

138

DesignSync version, which is created in the DesignSync vault at check-in time (a vault
version).

When a Milkyway object is checked in to the DesignSync vault, DesignSync applies a
tag that indicates the object's local version number. If the local version is 6, DesignSync
applies the tag MW_6.

lock

Attribute of a design object indicating that you or another team member is using and
most likely editing the object. The owner of the locked object has the exclusive right to
check it in to create the next version. See also locking work style.

locking work style

A team work style where each member locks an object while editing it, preventing other
team members from checking in local modifications as new versions, until the locker
checks in again. See also DesignSync Data Manager User's Guide: Locking or Merging
Work Style?.

look & feel

The DesignSync GUI client allows you to customize the look and feel to determine the
appearance and behavior of the UI. For example, the appearance of the tool bar, and
the accelerator keys for the Cut, Copy, and Paste operations, depend on the look and
feel. There are three look and feels available: Java (Metal), Motif, and Windows (not
available on UNIX platforms).

M

merge

A merge allows you to combine your locally modified version of a design object with the
Latest version of the object, resolving inconsistencies between the versions. In the
merging work style, team members check out or populate without locking objects, thus,
merging is required to reconcile the streams. Team members can "merge to" a branch
to align the local metadata with the target branch, or "merge from" a branch to leave the
metadata aligned with the current branch. See also merging work style.

merge edge

A merge edge indicates an extra "derived from" version for a version. The merge edge
information is stored in the vault. When you perform a subsequent merge on the vault
object, the merge edge is used to determine what changes have already been made,
improving the efficiency of the merge.

Source_Glossary

139

merging work style

A team work style where team members check out objects without locking them.
Multiple team members can edit the same object at one time; the first checked-in
version becomes the Latest version and team members have to merge their edits in
with this Latest version. See also DesignSync Data Manager User's Guide: Locking or
Merging Work Style?.

metadata

Information about the objects that DesignSync manages, including the object's vault,
branches (including current branch), versions and version-last-retrieved, its status
(locked, unlocked, retired), its state as a local object (copy, locked copy, reference, link
to cache or mirror directory), configuration tags applied to the object, and timestamps of
operations on the object. Metadata is stored both on the server and locally. Local
metadata is stored in .SYNC folders on your local file system. Note: DesignSync
manages these .SYNC metadata folders; do not directly manipulate these folders or
their contents. See also DesignSync Data Manager User's Guide: Metadata Overview.

Milkyway

The name of a database format, data model, and a directory structure that tools can
adopt.

mirror directory

A directory that is automatically updated to contain the data set defined by a project
leader for your project vault. For example, your team may always want access to the
Latest version of files on the main Trunk branch. Another team may always want access
to the file versions with a specific tag that are on a development branch. DesignSync
creates links from users' work areas to the design objects in the mirror directory,
ensuring that you have the most up-to-date configuration for your project.

A mirror directory saves team members from performing populate or check-out
operations each time they want to access design changes made by team members.
Because DesignSync mirrors are implemented using UNIX symbolic links, there is no
support for mirrors on Windows. See DesignSync Data Manager Administrator's Guide:
Mirroring Overview.

module

A module is a collection of managed objects that together make up a single entity. For
example, DesignSync is a module composed of several sub-modules, such as
ProjectSync and DSDFII, which contain all the code, examples, and documentation
necessary to develop the applications.

DesignSync Data Manager DFII SKILL Programming Interface Guide

140

The data included in a module includes its own objects and references to other
modules, but not the contents of the referenced modules. See DesignSync Data
Manager User's Guide: What is a Module? for more information.

module base directory

The top workspace directory of a module.

You specify the location of the base directory with the populate command using the
Working directory option (populate -dir) when you get the module to your work
area. (If you do not specify the Working directory option, the operation uses your
current work area directory.)

module cache

A module cache is as a shareable workspace used for storing static modules to share
with users across the network. Users link to the shareable workspace instead of to the
module on the SyncServer. DesignSync Administrators or Project Managers can create
module caches for modules containing common tools, libraries, or other modules
needed for reference. Instead of populating the full contents of a module, UNIX users
can populate a module cache link that provides access to the data without copying all
the files locally. This reduces the populate time for the user as well as load on the
server.

A project leader fetches modules into a module cache, preferably in "share" mode, to
utilize DesignSync's file caching. When users populate module data, they can specify
whether to link to modules in the module cache, or fetch modules from the server. How
module data is retrieved is referred to as the module cache mode. The default module
cache path, and the default module cache mode, can be defined in the registry by the
team leader or by an individual user.

Note: Legacy modules can be linked to, or copied from, a module cache. The module
cache mode of "copy" only applies to legacy modules. If you attempt to copy a non-
legacy module from a module cache, DesignSync fetches the module from the server.

module cache link

A managed link to a module cache (mcache). The mcache link provides access to the
module contents without requiring the user to load the contents of the module into her
workspace by using UNIX symbolic links.

module category

A module category is a logical folder on the DesignSync server used to group modules
into related groups.

Source_Glossary

141

For instance, tools developed and maintained for internal use, can be in a DesignSync
category "Tools" which differentiate them immediately from applications being
developed for external use.

module delta

Module delta mode shows only the files, folders, and hierarchical references that have
been changed or added in the current version when you expand the module version on
the server.

module member

A module member is any individual file, directory, or collection object added to a
module.

module root

The module root of a module is the top level directory into which a module is fetched
when users populate the module to their work areas.

module view

A module view is a filtered sub-group of module members. A module view definition is
loaded onto the server so that the filtered sub-group is available to users who have
access to the module but only need a specific set of files. For example, a project may
contain source code, documentation, and compiled code. The development team may
require only the source code. The release engineering team may require both the
source code and the compiled code. The quality assurance team may require only the
compiled code. The documentation team may require only the documentation. Using
views, the team members do not have to populate the entire module or customize their
own filtering at populate time.

module view definition

A module view definition is a TCL list that defines the module view. The module view
definition is created in a local file on the system and then loaded or removed from the
server with the view command set. The module view definition contains the name of
the view, an optional description, and the filters and hreffilters that define the module
view.

movable tag

A logical tag construct applied to a progression of snapshots of a set of object versions.
A tag is considered "movable" if you reapply it to new versions of the objects as
development progresses. A moveable tag must be mutable. If a tag is never meant to

DesignSync Data Manager DFII SKILL Programming Interface Guide

142

be moved, it is considered a fixed tag. See also tag, DesignSync Data Manager User's
Guide: Fixed Tags and Movable Tags.

mutable

A mutable object has the ability to change. In DesignSync, this term is usually used in
relationship to tags. For example, the creation of module branch, it is assigned an
immutable module branch tag of Trunk which can not be altered. However, you can
add mutable tags to versions of this module branch such as Test, Gold, Silver, Release,
December. You can move these tags as needed. Mutable and immutable tags can be
used to enforce logical tag constructs like movable tags and fixed tags. See also tag.

N

natural path

The natural path is the path where that object is placed under the module base
directory.

normal href mode

The selector associated with the href is examined. If it represents a static version, which
means that it is a version numeric, or is a version tag, or a list of such items, then that
module is fetched using the selector and the mode switches to static for sub-modules.
Otherwise, the module is still fetched using the selector, but the mode remains norma
for subsequent levels of hierarchy.

netlist

See RTL Team, Place and Route.

note

A note is a record of information that you attach to a project or a project configuration.
You can attach notes to multiple objects, including design files. Each note is of a
particular note type with specific fields, or properties, you use to enter data for
ProjectSync to track. See also note type, property.

note type

A note type is a database schema of fields (properties) for users to enter data for
ProjectSync to track. ProjectSync provides standard note types for the ProjectSync
server administrator to install. The administrator can modify the standard note types, as
well as creating custom note types. See also note, property, property type.

O

Source_Glossary

143

object

A DesignSync object, commonly referred to as an "object' in the DesignSync
documentation, is a file, folder, module, collection, symbolic link, or other object that
can be managed by DesignSync.

other library information

 Information contained in the Milkyway library file other than technology information,
reference libraries, and the catalog of cells for the local directory. Examples of Other
Library Information are:

• Logical equivalence of cells, such as those used by Astro during optimization
• Cosmos pcells
• Properties stored by Cosmos during schematic driven layout
• A reference control file

Note: The Other Library Information can include the technology file. If your DesignSync
administrator has disabled the "Manage technology file separately" option on the
SyncAdmin Third Party Integration form, DS MW manages the technology file as part of
the Other Library Information. See DesignSync Data Manager MW User's Guide:
Managing the Technology File for information.

overlapping modules

A workspace folder can be populated with files from more than one module. These
modules are considered overlapping because a single workspace directory contains
members of more than one module. When you have overlapping modules, you must
explicitly add any new members to the correct module before checkin. You can check
in or populate the modules either independently or in a single operation.

overlay

Fetching a file specified by the selector-list, and placing it in the working directory
without changing the metadata. In other words, the user remains working on the same
branch as before.

P

panel

A ProjectSync window or subwindow containing properties. Most panels behave like a
graphical user interface (GUI) form element in which you enter data in fields and other
GUI widgets. See also property.

persistent selector list

DesignSync Data Manager DFII SKILL Programming Interface Guide

144

Specify what branch or version a command operates a version or branch is not explicitly
specified. Checkin, checkout, populate, and import operations support persistent
selector lists. Commands that do not use the persistent selector list typically operate on
the current version or current branch of the object in your workspace. An object's
persistent selector list is stored in local metadata or is inherited from the parent folder.
See also selector, selector list.

place and route

One of the Milkyway-based tools (Astro) performs this step, where a netlist is used to
describe which components need to be placed and which wires or "nets' need to be
routed among the components.

populate

Process of making a revision-controlled design object available in your workspace. You
can populate with locked or unlocked copies of objects, links to cache or mirror copies
of objects, or references to objects. The objects populated reflect those objects existing
in the vault and not those objects currently residing in your local area, unlike a recursive
checkout where only the objects currently residing in your local area are checked out.
Populate and checkout can be used interchangeably for all DesignSync objects except
modules and module members which can only be populated into your workspace. See
also DesignSync Data Manager User's Guide: Populating Your Work Area.

port number

Identifier for a specific server process through which a client process sends and
receives data. The registered port number for SyncServer (Synchronicity server)
processes is 2647.

project

A group of revision-controlled design objects stored together as a single design effort.
You can manage caches on a per project basis -- in creating a project, you associate a
vault with a cache to create a local view of the design data. See also DesignSync Data
Manager's User's Guide: What Is a Project?, DesignSync Data Manager's User's Guide:
Design Reuse.

ProjectSync

ENOVIA Synchronicity ProjectSync is a web-based system for managing engineering
projects. ProjectSync helps engineering teams track bug reports, change orders, and
continuing dialogue on engineering projects.

property

Source_Glossary

145

A property in ProjectSync is an element of a panel, like a field or other widget on a form
in the graphical user interface (GUI). A property on a note type is characterized by 4
attributes - a name, a prompt string (optional), a type, and a default value (optional).
See also note, note type, panel, ProjectSync User's Guide: What Are Properties?.

property type

A data type corresponding to a property on a note type. Examples of predefined
property types include Boolean, Date, Integer, Float, and String. See also property,
note type.

protocol

Portion of a URL address that indicates how to access the Internet resource. The "http"
protocol, for example, supports such resources as HTML files, CGI applications, and
Java applets. The DesignSync "sync" protocol is used to communicate with a
SyncServer, while the "file" protocol can be used to navigate your local file system. See
also DesignSync Data Manager User's Guide: DesignSync URLs.

proxy

A program residing on a firewall host that intercepts communications between a
company's intranet and the Internet, only forwarding a request if the requesting party
can be authenticated. Proxies can also perform tasks such as caching data to improve
transmission speeds -- for example, the proxy might store a previously requested web
page in cached memory to improve response time for subsequent requests for the data.
DesignSync provides a registry setting and environment variable so that you can specify
a proxy IP address and port number. See also authentication, cache, firewall, intranet.

prune

To remove unneeded versions from a vault to free up disk space. See DesignSync
Help: Deleting Versions from a Vault.

Q

R

RCS

Revision Control System. A software tool for UNIX systems that manages multiple
versions of files, tracking changes and controlling shared files. RCS uses a locking work
style where a user locks a file version and thus has the exclusive right to check in the
next version of that file. See locking work style.

reference

DesignSync Data Manager DFII SKILL Programming Interface Guide

146

1. An object that is not physically present, but instead points to another object. The
object has local metadata . When an object is checked in with the option to leave
a reference to the object, the local copy is deleted, and a reference pointing to
the vault replaces it. The integrations do not support references. See also Object
States, regenerate.

2. REFERENCE also refers to a pointer you create in a ProjectSync project (in a
sync_project.txt

3. An ASCII file created and modified by DS MW to list the reference libraries for
DesignSync maintenance.

When you set up a library (using the

 file); use REFERENCEs to import modules from other
design projects into your design. See also DesignSync Data Manager User's
Guide: Using Vault REFERENCEs for Design Reuse.

Library Setup Options form) or export
reference libraries (using the Export Library Information form), DS MW captures
the path to each reference library in your design. For each reference library in
your design, the refs.txt file contains a line with the structure: REFERENCE
path_to_library, for example:

REFERENCE /home/takeda/mde_lab/lab3/defoutlib

The pathname_to_library can be an absolute or relative path. The
pathname_to_library can also take the form $MW_REFLIB/path, where
MW_REFLIB specifies an environment variable and path specifies a path relative
to the directory defined by $MW_REFLIB.

When you populate or when you check out a library to a new workspace,
DesignSync fetches the refs.txt

reference Library

 file from the vault to your workspace and
loads the reference libraries the file identifies into your library file.

A Milkyway cell in a library under DesignSync control may contain a reference to a cell in
another library. The other library is called a reference library. In order to instantiate cells into
your cell, you must first have declared the reference libraries with a Milkyway command, which
causes a pointer to the reference library to be injected into the library file.

When you populate a new workspace, that operation cannot be completed until the
library file in the new workspace is made aware of the reference libraries.

reference control file mode

Commonly, the library reference information for a Milkyway library resides in its lib file.
In reference control file mode, library reference information resides in one of the library's
attached files. This attached file is similar in form to the DS MW refs.txt file, except
that it also contains the path to the library itself.

Source_Glossary

147

When a library is in reference control file mode, DS MW does not export the library
references to a separate file. Instead, DS MW maintains the attached file as part of the
Other Library Information.

To put a library into reference control file mode, use Scheme calls. See also
DesignSync Data Manager MW User's Guide: Putting a Library into Reference Control
Files Mode.

Note:

• When a library is in reference control file mode, the Reference Library field of the
Library Setup and Export Library Information forms cannot be edited.

• If you import a library from the vault to a different library name in your workspace
(for example, if you populate a library into a new workspace with a different
name), DS MW cannot determine the name of the library and therefore cannot
update the library reference information in the attached file. You must edit the
attached file and correct the library references manually.

regenerate

DSDFII locked reference mode used when regenerating the object from a different
source rather than editing it directly. This mode does not transfer the object from the
vault. This is a more efficient mode for that use model since the user does not require
the latest version of the generated file as long as the source files are correct. See also
reference.

registry

The key-based repository used by DesignSync to store DesignSync settings. It is
designed to mirror in functionality and layout the Windows Operating System registry.
The registry supports customizing settings for the entire site, a specific server, a project,
and an individual user. This allows a user to personalize the DesignSync environment.
 For more information, see registry files, DesignSync Data Manager Administrator’s
Guide: Overview of Registry Files.

registry file

A file containing setup and tool configuration information for DesignSync tools.
DesignSync uses different registry files for different functions. Some of these registry
files are only for use by the DesignSync administrator while others can be customized
by individual users or project managers. See also registry.

relative path

DesignSync Data Manager DFII SKILL Programming Interface Guide

148

The relative path indicates the path from the upper-level module to the object it is
creating the connection to. The object can be a module, legacy module, configuration,
IP Gear deliverable, or DesignSync vault.

remove

An operation to remove a module member from a module. This removes the member
from all future operations on the module. You can add the object back to the module
later, if needed.

replica

A copy of a design object created when you fetch (check out without a lock) a version
from the vault. A replica contains relational information about the original replicated
object, so that DesignSync can determine, for instance, whether the original object has
changed since you fetched it. See also DesignSync Data Manager User's Guide: Object
States.

repository

See vault.

retire

Prevents a design object from being automatically included in populate or recursive
checkout operations. Retiring an object's branch rather than deleting the object itself
gives you the opportunity to reinstate the object for future populate and recursive
checkouts. Module objects are never retired, they are removed from the module. See
also DesignSync Data Manager User's Guide: Retiring Branches.

RevisionControl note

A ProjectSync note created when a DesignSync revision control operation takes place.
The note has a built-in type, RevisionControl, that contains information about the
operation, such as the name of the user, command used to invoke the operation, and
execution time. See also DesignSync Data Manager Administrator's Guide:
RevisionControl Notes Overview.

root directory

See workspace root directory.

RSA

Rivest, Sharmir, and Adleman Internet encryption and authentication system. RSA is a
commonly used encryption and authentication algorithm embedded in most web

Source_Glossary

149

browsers. The algorithm uses separate keys -- a public key a sender uses for
encrypting and a private key used by the owner to decrypt messages. The private key is
never transmitted across the Internet, thus protecting the encryption from being
deciphered. See also encryption.

RTL team

A group of people who create RTL source code, typically in Verilog or VHDL format.
These people put the RTL code through synthesis to produce a netlist. A netlist serves
as an entry point to Place and Route.

S

save settings

See client defaults.

SCC (Source Code Control)

DSVS features Windows-based integration that uses MSSCCI standard and is SCC
compliant meaning that in additional to be integrated with Visual Studio, DSVS can be
used with any other Windows application that supports an SCC plug-in.

selector

An expression that identifies a branch and version of a managed object. For example,
the version tag "gold", the branch selector "Rel2:Latest", the version number "1.4", and
the reserved keyword "Latest" are all selectors. Selectors are specified with -version
and -branch options to various commands or through a persistent selector list. See also
selector list, persistent selector list.

selector list

A comma-separated list of selectors. DesignSync uses the selector list as a search
order to select a version on which to operate. If the first selector in the list results in no
match, DesignSync retries the command using the next selector in the list. The
command fails only if all selectors in the list produce no match. An example of a selector
list is "gold,silver,Rel3.0:Latest,Trunk". See also selector, persistent selector list.

server

A computer process that provides services to client processes. The service provided by
the SyncServer process is the management of the revision control and configuration
tasks on the data in the DesignSync vaults. See also client.

server-side trigger

DesignSync Data Manager DFII SKILL Programming Interface Guide

150

A trigger that runs on the server. See also trigger.

SITaR (Submit, Integrate, Test, and Release)

SITaR (Submit, Integrate, Test, and Release) is a simple module-based workflow for
projects that consist of multiple blocks, or modules, developed by several contributors.
SITaR uses hierarchical references to create a controlled integration environment for
testing the interaction between the contents of modules in the hierarchy. See also,
DesignSync Data Manager User's Guide: Overview of SITaR Workflow

skip

The action of skipping interim versions when checking in a new version of a design
object which you did not lock, and replacing the Latest version. Skipping differs from a
standard checkin in that interim versions can not be seen by team members checking
out the Latest version; if you want the changes from the interim versions, you must
request the versions explicitly by version number and enter their changes manually, or,
if the file is not a binary file, you may be able to merge the changes into the file. Note:
Skipping is an advanced operation and should be used with caution because it retires
versions from the vault. You can only access the skipped versions if you enter their
version numbers explicitly. See also DesignSync Data Manager User's Guide: Checking
in Design Files.

SSL

A protocol to provide encrypted communications across a network. SSL is indicated by
the https designated in a URL.

staging area

Intermediate folder used while relocating or converting vault folders (repositories). For
example, if you move a vault folder to a new SyncServer, you first export the vault folder
to an intermediate folder, then import the intermediate directory into a new SyncServer.

stcl

ENOVIA Synchronicity's customized Tcl (Tool Command Language) interpreter, one of
the DesignSync client applications. The stcl client combines the text commands
available in dss (the DesignSync shell) with the general scripting capabilities of Tcl. To
invoke stcl, enter "stcl" from your operation-system window (UNIX or Windows). You
can also enter "stcl" followed by a script name to execute an stcl script, or enter "stcl -
exp" followed by a DesignSync or Tcl command in quotes to execute a single
command. In most cases, use stclc to take advantage of the concurrent client
capabilities. See also Command Reference: stcl command description, DesignSync
Data Manager User's Guide: DesignSync Command-Line Shells.

Source_Glossary

151

stclc

The concurrent version of stcl. The stclc client has several advantages over stcl,
because it's designed to be used concurrently with other client processes. To invoke
stclc, enter "stclc" from your operation-system window (UNIX or Windows). You can
also enter "stclc" followed by a script name to execute an stcl script, or enter "stclc -exp"
followed by a DesignSync or Tcl command in quotes to execute a single command. See
also Command Reference: stcl command description, DesignSync Data Manager
User's Guide: DesignSync Command-Line Shells.

static href mode

Resolves hierarchical references to the static version of the sub-module recorded with
the href at the time the hierarchical reference was created is always used. See also
hierarchical_reference, dynamic reference.

substitution tag

ProjectSync extension to HTML that lets you embed placeholders for GUI widgets within
a panel's HTML template. Substitution tags are coded as HTML comments in the
template in the following format:

 <!-- SYNC <substname> -->

where <substname> is the substitution tag name. You can define the behavior for the
substitution widget by modifying the installation (.ini) file corresponding to the panel's
HTML template (or by creating an initialization file for the template if one does not exist.)

symbolic link

(UNIX symbolic link) A special UNIX file that points to another file. A link takes up less
space than a copy of the original file. Use the UNIX ln command to create symbolic
links. See the UNIX ln documentation for more information. See also DesignSync Data
Manager User's Guide: Object States, DesignSync Data Manager Administrator's
Guide: How DesignSync Handles Symbolic Links.

Symbolic links are also used with mirror directories , caches, and module caches. Also
see hard link.

sync

The portion of a URL address that indicates the protocol used by the software to
determine how to access an Internet resource. The "sync" protocol is used to
communicate with a SyncServer. See also protocol, URL.

syncd

DesignSync Data Manager DFII SKILL Programming Interface Guide

152

The Synchronicity daemon process. The syncd process manages communication
between dss/stcl sessions and SyncServers. Note that dssc and stclc do not use syncd;
they communicate directly with a SyncServer. See also Command Reference:
syncdadmin.

SyncAdmin

The Synchronicity Administrator tool. LAN administrators can use SyncAdmin to set
site-wide preferences, such as the default fetch preference, how symbolic links are
managed, and which cache users should access. Users can use SyncAdmin to set user
preferences such as their default editor and HTML browser. SyncAdmin is a standalone
tool located in <SYNC_DIR>/bin. See also DesignSync Data Manager Administrator's
Guide.

sync_project.txt file

A file created when you create a project in ProjectSync. The sync_project.txt file
includes the REFERENCE and CONFIG mapping statements that let you import
modules from other projects into your designs. See also ProjectSync User's Guide.

SyncServer

A DesignSync server process that manages shared information, controls access to
design files, and performs administrative functions such as user privilege validation. A
SyncServer is an http server, with a special "sync" protocol layered on the http protocol,
for example, sync://host:port/Projects/Sportster. See also server, protocol, DesignSync
Data Manager User's Guide: What Is a SyncServer?.

sync_servers.txt file

A file created by a user (My Servers), project leader (Site Servers), or administrator
(Enterprise Servers) that lists SyncServer or vault definitions, which facilitates entering
URLs in various locations in the DesignSync graphical interface and integrations; such
as the DesignSync workspace wizard and the DSDFII Join Library wizard.. See
DesignSync Data Manager Administrator's Guide: SyncServer List Files.

sync_server_list File

The DesignSync installation script, sync_install, automatically generates the
sync_server_list file. Do not edit the sync_server_list file.

T

tag

Source_Glossary

153

An identifier you attach to a group of design object versions that you want to identify as
a group. You can then perform operations on the group of objects as a whole. For
example, you might tag all versions that went into a release "Rel2_0" so that at a later
date another user could fetch all versions tagged "Rel2_0" thereby recreating that
release. Tags can also be applied to branches. See also design configuration, mutable,
immutable, DesignSync Data Manager User's Guide: Tagging Versions and Branches.

Tcl

Tool Command Language, a scripting language and interpreter developed at University
of California, Berkeley by Dr. John Ousterhout. Tcl interpreters are embedded in many
EDA applications, including DesignSync. See also stcl, stclc.

TCP/IP

Transmission Control Protocol/Internet Protocol, the communication conventions, or
protocol, for transferring data on the Internet. Computers accessing the Internet have
copies of the TCP/IP program which manages data transmissions, decoding addresses
and transmitting the data to the specified IP address. See also IP address, domain
name, DNS.

technology file

An ASCII file (tech/tech.tf) created and modified by DS MW with the purpose of
making DesignSync aware of the library technology data for a design.

When you populate or when you check out a library to a new workspace, DesignSync
fetches the tech.tf file from the vault to your workspace and loads the technology
data the file identifies into your library file.

Note: If your DesignSync administrator has disabled the "Manage technology file
separately" option on the SyncAdmin Third Party Integration form, DS MW manages the
technology file as part of the Other Library Information. See also DesignSync Data
Manager MW User's Guide: Managing the Technology File.

template

ProjectSync implements note panels with HTML templates. Administrators can
generate an HTML template from an existing note type, then modify the HTML code to
change its appearance.

trigger

A watchpoint (a Tcl script) that causes an action, such as sending an email, to occur
automatically in response to some other action, such as checking in a file. A client

DesignSync Data Manager DFII SKILL Programming Interface Guide

154

trigger is a trigger that is executed on the client. A server-side trigger is a trigger that
runs on the server.

Trigger arguments

Trigger arguments are passed to any triggers that have been set up for the operation.
Consult your project leader for information about any triggers that are in use and how
they use arguments.

U

unique identifier

Every object and folder in the vault of a module is assigned a unique identifier. These
unique identifiers are used within the module's versions. There is a mapping from the
unique identifier to a natural path. The natural path can change from one module
version to another, however, changing the natural path in this manner does not change
the object's unique identifier.

unlock

Remove a lock from a design object's branch. You can unlock branches you have
locked or those locked by team members. Access controls can be set up to limit
unlocking operations. See also DesignSync Data Manager User's Guide: Undoing a
Check Out, DesignSync Data Manager User's Guide: Unlocking Branches.

URL

Uniform resource locator, an address for a resource. A URL consists of the access
protocol, followed optionally by a machine name and/or the path to the object.
DesignSync uses a special "sync" protocol, for example,
sync://host:port/Projects/Sportster. Use the "file" protocol to access files on a local
network. See also http. https, sync, IP address, domain name.

user

Any individual authorized to work with DesignSync or ProjectSync.

user group

A collection of users defined as a single unit and, as a unit, granted or restricted access
to DesignSync commands or objects with the access control system. User groups are
defined in Access Administrator.

user profile

Source_Glossary

155

Attributes defined in ProjectSync by an administrator to identify a user. The
administrator enters the username, password, and contact information for each team
member. ProjectSync can be configured to allow access only to registered users.

V

vault

The repository of the versions, including branched versions, checked in for a particular
design object. Note that a vault stores versions of a single design object. A "project
vault" refers to the top-level folder of a project and thus contains a vault for each
revision-controlled object in the folder. See also DesignSync Data Manager User's
Guide: Vaults, Versions, and Branches.

Each DesignSync object has its own vault repository to maintain the branches.
 DesignSync modules functionality creates an abstraction layer rather than providing
direct access to the vault objects. This allows the module to function as an atomic
object, rather individual objects.

DesignSync file-based functionality directly manipulates vault objects. This requires
each object to be processed individually and enumerated explicitly in such operations
as populate, checkout, tag, and checkin.

version

A fixed snapshot of a design object, such as a file or collection, stored in a vault with a
numeric identifier. Version numbers are composed of an even number of numeric fields,
separated by periods. For example the following are valid version numbers: 1.3, 1.3.1.4,
and 1.2.5.1.1.1.See also DesignSync Data Manager User's Guide: Vaults, Versions,
and Branches.

version-extended naming

When invoking Advanced Diff from DesignSync, you can specify the files you want to
compare using version-extended filenames, which consist of the filename, followed by a
semicolon (;), followed by a version number or tag. For example, alu.v;1.2 is version 1.2
of alu.v, and alu.v;golden is the version that is tagged 'golden'. You can also use the
following reserved tags:

• Orig The version in the vault from which your local version originated; for
example, alu.v;Orig.

• Latest The most recent version in the vault; for example, alu.v;Latest. Often
Latest and Orig are the same version. For example, you fetch alu.v;1.4, which is
the most recent version in the vault. Version 1.4 is both Latest and Orig. If your
teammate then checks in version 1.5, Orig is still version 1.4, but Latest is now
version 1.5.

DesignSync Data Manager DFII SKILL Programming Interface Guide

156

DesignSync interprets these version-extended filenames and fetches files from the vault
as needed, placing them in your DesignSync cache. These cached files may be used by
the defined graphical Diff utility ; DesignSync does not use these files and users will not
get links to these files if they populate from the cache.

version tag

A tag can be applied to either an object version or a branch. A tag applied to an object
version is called a version tag. See DesignSync Data Manager User's Guide: Tagging
Versions and Branches.

view

A way to categorize cells. Conceptually, a cell may have many different views--a place
and route view, an abstract view, and so on.

In the Milkyway file system, the view is a directory beneath the library directory. The
view directory contains all of the cells of that view. (Cells are made up of files in the view
directory.) The file system hierarchy has this structure:

Library directory => View directory => Cell view files

W

workspace

A DesignSync workspace is a folder on your local system allows a user to gather
various objects, generally under revision control, and work with them as a cohesive unit.
Revision Controlled objects can be checked out or populated into the workspace,
edited, and then checked in to create the next version on the server vault.

workspace root directory

See workspace root path.

workspace root path

The top folder of your workspace, where information about all modules with base
directories at or below that point is stored. In DSDFII, you can manually enter a
workspace root path for any modules containing Cadence libraries outside the
workspace root directories already known to Cadence. See also module base directory,
DesignSync Data Manager DFII User's Guide: Setting the Workspace Root Path.

workspace wizard

Source_Glossary

157

A series of dialog boxes, launched by Revision Control =>Workspace Wizard, that
guide you through the process of creating your own project or joining an existing project.
See also Workspace Wizard Overview.

X

Y

Z

159

Index
A

annotating schematics 72

C

compare ... 41

configuring .. 101

menus ... 101

conventions .. 3

customer support 119

customizations 111

compare view object handler 44

project ... 111

site .. 111

D

dssAddFileP function 7

dssBranchCellP function 7

dssBranchCellViewP function 8

dssBranchLibraryP function 9

dssCancelCellViewP function 9

dssCancelFileP function 11

dssChangeDefaultsContextP function
.. 111

dssChangeUserLevelP function 112

dssCheckinCategoryP function 12

dssCheckinCellP function 14

dssCheckinCellViewP function 16

dssCheckinFileP function 18

dssCheckinHierarchyP function 21

dssCheckinLibraryP function 25

dssCheckoutCategoryP function 27

dssCheckoutCellP function 29

dssCheckoutCellViewP function 30

dssCheckoutFileP function 32

dssCheckoutHierarchyP function 35

dssCheckoutLibraryP function 39

dssCompareViewsHandlerP function . 44

dssCompareViewsListHandlersP 47

dssCompareViewsP function 41

dssCompareViewsRemoveHandlerP
function ... 48

dssConfigureLibraryP function 48

dssCreateCellViewP function 49

dssDeleteCategoryP function 50

dssDeleteCellP function 52

dssDeleteCellViewP function 54

dssDeleteFileP function 56

DesignSync Data Manager DFII SKILL Programming Interface Guide

160

dssDeleteLibraryP function 59

dssDeleteTemporaryViewsP function. 60

dssDeleteVersionP function 61

dssEnableDebugP function 112

dssExecuteTclP function 113

dssFetchCellViewVersionP function ... 61

dssFetchLockedP function 62

dssGetFileTagsP function 65

dssGetFileVersionP function 66

dssGetFileVersionsP function 68

dssGetTagListP function 69

dssGetViewPathP function 71

dssGetViewTagsP function 71

dssGetViewVersionP function 72

dssHelpP function 114

dssInit.il file 101

dssIsFileLockedP function 75

dssIsViewLockedP function 76

dssJoinLibraryP function 77

dssLibraryStatusP function 79

dssListHierarchyP function 81

dssMenuAddItemP function 101

dssMenuAddValidItemP function 102

dssMenuListItemsP function 104

dssMenuListMenuP function 104

dssMenuLoadConfigP function 105

dssMenuRefreshP function 105

dssMenuRemoveItemAllP function .. 106

dssMenuRemoveItemP function 106

dssMenuRemoveValidItemP function
.. 107

dssMenuSaveConfigP function 108

dssRefreshWindowBannerP function108

dssTagCategoryP function 83

dssTagCellP function 85

dssTagCellViewP function 86

dssTagFileP function 87

dssTagHierarchyP function 89

dssTagLibraryP function 93

dssUnlockCellViewP function 94

dssUnlockFileP function 95

dssViewDataSheetP function 96

dssViewVersionHistoryP function 98

E

error handling 5

F

functions 3, 111

Index

161

dssAddFileP 7

dssBranchCellP 7

dssBranchCellViewP 8

dssBranchLibraryP 9

dssCancelCellViewP 9

dssCancelFileP 11

dssChangeDefaultsContextP 111

dssChangeUserLevelP 112

dssCheckinCategoryP 12

dssCheckinCellP............................. 14

dssCheckinCellViewP 16

dssCheckinFileP 18

dssCheckinHierarchyP 21

dssCheckinLibraryP 25

dssCheckoutCategoryP 27

dssCheckoutCellP 29

dssCheckoutCellViewP 30

dssCheckoutFileP 32

dssCheckoutHierarchyP 35

dssCheckoutLibraryP 39

dssCompareViewsHandlerP 44

dssCompareViewsListHandlersP.... 47

dssCompareViewsP 41

dssCompareViewsRemoveHandlerP
 .. 48

dssConfigureLibraryP 48

dssCreateCellViewP 49

dssDeleteCategoryP 50

dssDeleteCellP 52

dssDeleteCellViewP 54

dssDeleteFileP 56

dssDeleteLibraryP 59

dssDeleteTemporaryViewsP 60

dssDeleteVersionP 61

dssEnableDebugP 112

dssExecuteTclP 113

dssFetchCellViewVersionP 61

dssFetchLockedP 62

dssGetFileTagsP 65

dssGetFileVersionP 66

dssGetFileVersionsP 68

dssGetTagListP 69

dssGetViewPathP 71

dssGetViewTagsP 71

dssGetViewVersionP 72

dssGetViewVersionsP 74

dssHelpP 114

DesignSync Data Manager DFII SKILL Programming Interface Guide

162

dssIsFileLockedP............................ 75

dssIsViewLockedP 76

dssJoinLibraryP 77

dssLibraryStatusP........................... 79

dssListHierarchyP 81

dssMenuAddItemP 101

dssMenuAddValidItemP 102

dssMenuListItemsP 104

dssMenuListMenuP 104

dssMenuLoadConfigP 105

dssMenuRefreshP 105

dssMenuRemoveItemAllP 106

dssMenuRemoveItemP 106

dssMenuRemoveValidItemP 107

dssMenuSaveConfigP 108

dssRefreshWindowBannerP 108

dssTagCategoryP 83

dssTagCellP 85

dssTagCellViewP............................ 86

dssTagFileP 87

dssTagHierarchyP 89

dssTagLibraryP............................... 93

dssUnlockCellViewP 94

dssUnlockFileP 95

dssViewDataSheetP 96

dssViewVersionHistoryP 98

G

getting help 117

H

help .. 117

L

loading SKILL functions 101

M

menus .. 101

customizing 101

P

PDF file .. 118

of API reference 118

printing documentation 118

production documentation 118

accessing 118

S

schematics ... 72

adding version number 72

SKILL functions 101

loading .. 101

Index

163

synctrace command 5

syntax conventions 3

T

tracing .. 5

V

version number 72, 74

adding to schematics 72

views

compare .. 41

	ENOVIA Synchronicity DesignSync Data Manager
	Copyrights and Trademarks
	Release Information
	Documentation
	Selecting the appropriate release
	Available Release-Specific Documentation
	Locating the Release Specific Documentation
	Product Enhancement Overview
	General and Open Issues
	Closed Issues
	Installation

	Introduction
	Syntax Conventions

	Error Handling and Diagnostics
	Error Handling in Function Invocations
	Setting a Trace
	Return Values
	Return Values and Background Commands

	Revision Control Functions
	dssAddFileP
	Description
	Arguments
	Value Returned

	dssBranchCellP
	Description
	Arguments
	Value Returned

	dssBranchCellViewP
	Description
	Arguments
	Value Returned

	dssBranchLibraryP
	Description
	Arguments
	Value Returned

	dssCancelCellViewP
	Description
	Arguments
	Value Returned

	dssCancelFileP
	Description
	Arguments
	Value Returned

	dssCheckinCategoryP
	Description
	Arguments
	Value Returned

	dssCheckinCellP
	Description
	Arguments
	Value Returned

	dssCheckinCellViewP
	Description
	Arguments
	Value Returned

	dssCheckinFileP
	Description
	Arguments
	Value Returned

	dssCheckinHierarchyP
	Description
	Arguments
	Value Returned

	dssCheckinLibraryP
	Description
	Arguments
	Value Returned

	dssCheckoutCategoryP
	Description
	Arguments
	Value Returned

	dssCheckoutCellP
	Description
	Arguments
	Value Returned

	dssCheckoutCellViewP
	Description
	Arguments
	Value Returned

	dssCheckoutFileP
	Description
	Arguments
	Value Returned

	dssCheckoutHierarchyP
	Description
	Arguments
	Value Returned

	dssCheckoutLibraryP
	Description
	Arguments
	Value Returned

	dssCompareViewsP
	Description
	Arguments
	Value Returned
	Example
	Usage Tips
	Simple check for no changes
	Simplified check for instance additions and removals
	Check for differences across all views in a library with older release

	Related Topics

	dssCompareViewsHandlerP
	Description
	Arguments
	Value Returned
	Example
	Related Topics

	dssCompareViewsListHandlersP
	Description
	Arguments
	Return Value
	Related Topics

	dssCompareViewsRemoveHandlerP
	Description
	Argument
	Value Returned
	Example

	dssConfigureLibraryP
	Description
	Arguments
	Value Returned

	dssCreateCellViewP
	Description
	Arguments
	Value Returned

	dssDeleteCategoryP
	Description
	Arguments
	Value Returned

	dssDeleteCellP
	Description
	Arguments
	Value Returned

	dssDeleteCellViewP
	Description
	Arguments
	Value Returned

	dssDeleteFileP
	Description
	Arguments
	Value Returned

	dssDeleteLibraryP
	Description
	Arguments
	Value Returned

	dssDeleteTemporaryViewsP
	Description
	Arguments
	Value Returned

	dssDeleteVersionP
	Description
	Arguments
	Value Returned

	dssFetchCellViewVersionP
	Description
	Arguments
	Value Returned

	dssFetchLockedP
	Description
	Arguments
	Value Returned
	Example

	dssGetFileTagsP
	Description
	Arguments
	Value Returned

	dssGetFileVersionP
	Description
	Arguments
	Value Returned

	dssGetFileVersionsP
	Description
	Arguments
	Value Returned

	dssGetTagListP
	Description
	Arguments
	Value Returned
	Example

	dssGetViewPathP
	Description
	Arguments
	Value Returned

	dssGetViewTagsP
	Description
	Arguments
	Value Returned

	dssGetViewVersionP
	Description
	Arguments
	Value Returned
	Example

	dssGetViewVersionsP
	Description
	Arguments
	Value Returned

	dssIsFileLockedP
	Description
	Arguments
	Value Returned

	dssIsViewLockedP
	Description
	Arguments
	Value Returned

	dssJoinLibraryP
	Description
	Arguments
	Value Returned

	dssLibraryStatusP
	Description
	Arguments
	Value Returned
	Example

	dssListHierarchyP
	Description
	Arguments
	Value Returned

	dssTagCategoryP
	Description
	Arguments
	Value Returned

	dssTagCellP
	Description
	Arguments
	Value Returned

	dssTagCellViewP
	Description
	Arguments
	Value Returned

	dssTagFileP
	Description
	Arguments
	Value Returned

	dssTagHierarchyP
	Description
	Arguments
	Value Returned

	dssTagLibraryP
	Description
	Arguments
	Value Returned

	dssUnlockCellViewP
	Description
	Arguments
	Value Returned

	dssUnlockFileP
	Description
	Arguments
	Value Returned

	dssViewDataSheetP
	Description
	Arguments
	Value Returned
	Example

	dssViewVersionHistoryP
	Description
	Arguments
	Value Returned
	Example

	Menu Customization Functions
	Customizing the Synchronicity Menu
	dssMenuAddItemP
	Description
	Arguments
	Value Returned
	Example

	dssMenuAddValidItemP
	Description
	Arguments
	Value Returned
	Example

	dssMenuListItemsP
	Description
	Arguments
	Value Returned

	dssMenuListMenuP
	Description
	Arguments
	Value Returned

	dssMenuLoadConfigP
	Description
	Arguments
	Value Returned

	dssMenuRefreshP
	Description
	Arguments
	Value Returned

	dssMenuRemoveItemAllP
	Description
	Arguments
	Value Returned

	dssMenuRemoveItemP
	Description
	Arguments
	Value Returned
	Example

	dssMenuRemoveValidItemP
	Description
	Arguments
	Value Returned

	dssMenuSaveConfigP
	Description
	Arguments
	Value Returned

	dssRefreshWindowBannerP
	Description
	Arguments
	Value Returned

	Miscellaneous Functions
	dssChangeDefaultsContextP
	Description
	Arguments
	Value Returned

	dssChangeUserLevelP
	Description
	Arguments
	Value Returned

	dssEnableDebugP
	Description
	Arguments
	Value Returned

	dssExecuteTclP
	Description
	Arguments
	Value Returned
	Example

	dssHelpP
	Description
	Arguments
	Value Returned

	dssSetWorkspaceRootPathP
	Description
	Arguments
	Value Returned
	Example

	dssGetWorkspaceRootPathP
	Description
	Arguments
	Value Returned
	Example

	Getting Assistance
	Using Help
	Getting a Printable Version of Help
	Accessing Product Documentation
	Contacting ENOVIA

	DesignSync Glossary
	A
	acadmin
	accelerator key
	Access Administrator
	access control
	active selection
	add
	aggregate view data
	Apache
	authentication
	auto branching

	B
	base directory
	bookmark
	branch
	branch-point version
	branch tag

	C
	cache
	cancel
	category
	cell
	cell view collection
	Cell View File
	cell view attachment file
	cell view non-member
	cell view lock
	cell view tmp file
	checkin
	checkout
	client
	client defaults
	client trigger
	collection object
	command defaults
	components
	compression
	configuration
	configuration management
	copy out
	CVS

	D
	data sheet
	DES
	DesignSync web interface
	design configuration
	designer role
	DesSync
	domain name
	DNS
	DSDFII
	DS MW
	dss
	dssc
	DSVS
	dynamic href mode

	E
	EDA
	encryption
	end user
	external module

	F
	fetch
	file
	firewall
	fixed tag
	folder

	G
	gateway server
	GDM
	get
	groupware

	H
	Hard link
	Hercules
	hierarchical reference
	href mode
	http
	https

	I
	immutable
	integrator role
	initial data
	initial view data
	integrations
	Internet
	intranet
	IP address
	IP Gear deliverable

	J
	K
	keyword

	L
	LAN
	legacy module
	library
	library file
	library attachment
	library lock
	library shadow collection
	library file shadow
	library attachment shadow
	link
	Local version
	lock
	locking work style
	look & feel

	M
	merge
	merge edge
	merging work style
	metadata
	Milkyway
	mirror directory
	module
	module base directory
	module cache
	module cache link
	module category
	module delta
	module member
	module root
	module view
	module view definition
	movable tag
	mutable

	N
	natural path
	normal href mode

	O
	object
	other library information
	overlapping modules
	overlay

	P
	panel
	persistent selector list
	place and route
	populate
	port number
	project
	ProjectSync
	property type
	protocol
	proxy
	prune

	Q
	R
	RCS
	reference
	reference Library
	reference control file mode
	regenerate
	registry
	registry file
	relative path
	remove
	replica
	repository
	retire
	RevisionControl note
	root directory
	RSA
	RTL team

	S
	save settings
	SCC (Source Code Control)
	selector
	selector list
	server
	server-side trigger
	SITaR (Submit, Integrate, Test, and Release)
	skip
	SSL
	staging area
	stcl
	stclc
	static href mode
	substitution tag
	symbolic link
	sync
	syncd
	SyncAdmin
	sync_project.txt file
	SyncServer
	sync_servers.txt file

	T
	tag
	Tcl
	TCP/IP
	technology file
	template
	trigger

	U
	unique identifier
	unlock
	URL
	user
	user group
	user profile

	V
	vault
	version
	version-extended naming
	view

	W
	workspace
	workspace root directory
	workspace root path
	workspace wizard

	X
	Y
	Z

	Index

